500 research outputs found

    Irisin and FNDC5 in retrospect: An exercise hormone or a transmembrane receptor?

    Get PDF
    FNDC5 (fibronectin domain-containing [protein] 5) was initially discovered and characterized by two groups in 2002. In 2011 FNDC5 burst into prominence as the parent of irisin, a small protein containing the fibronectin type III domain. Irisin was proposed to be secreted by skeletal muscle cells in response to exercise, and to circulate to fat tissue where it induced a transition to brown fat. Since brown fat results in dissipation of energy, this pathway is of considerable interest for metabolism and obesity. Here I review the original discoveries of FNDC5 and the more recent discovery of irisin. I note in particular three problems in the characterization of irisin: the antibodies used to detect irisin in plasma lack validity; the recombinant protein used to demonstrate activity in cell culture was severely truncated; and the degree of shedding of soluble irisin from the cell surface has not been quantitated. The original discovery proposing that FNDC5 may be a transmembrane receptor may deserve a new look

    BtubA-BtubB Heterodimer Is an Essential Intermediate in Protofilament Assembly

    Get PDF
    BACKGROUND:BtubA and BtubB are two tubulin-like genes found in the bacterium Prosthecobacter. Our work and a previous crystal structure suggest that BtubB corresponds to alpha-tubulin and BtubA to beta-tubulin. A 1:1 mixture of the two proteins assembles into tubulin-like protofilaments, which further aggregate into pairs and bundles. The proteins also form a BtubA/B heterodimer, which appears to be a repeating subunit in the protofilament. METHODOLOGY/PRINCIPAL FINDINGS:We have designed point mutations to disrupt the longitudinal interfaces bonding subunits into protofilaments. The mutants are in two classes, within dimers and between dimers. We have characterized one mutant of each class for BtubA and BtubB. When mixed 1:1 with a wild type partner, none of the mutants were capable of assembly. An excess of between-dimer mutants could depolymerize preformed wild type polymers, while within-dimer mutants had no activity. CONCLUSIONS:An essential first step in assembly of BtubA + BtubB is formation of a heterodimer. An excess of between-dimer mutants depolymerize wild type BtubA/B by sequestering the partner wild type subunit into inactive dimers. Within-dimer mutants cannot form dimers and have no activity

    Tenascin-C Enhances Pancreatic Cancer Cell Growth and Motility and Affects Cell Adhesion through Activation of the Integrin Pathway

    Get PDF
    Background: Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. Methods: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. Results: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. Conclusion: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and migh

    Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition

    Get PDF
    Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanism of microtubule growth from the view of hydrolysis effects. Besides, the microtubule growth involves the closure of a curved sheet at its growing end. The curvature conversion also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical-chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. Firstly, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure, and the minimum conformational cap length that can stabilize the growth is demonstrated to be two dimers. Then, we show that the conformational cap can function independently of the GTP cap, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth.Comment: 23 pages, 7 figures. 2 supporting movies have not been uploaded due to the file type restriction

    Selection of reference genes for gene expression studies in ultraviolet B-irradiated human skin fibroblasts using quantitative real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reference genes are frequently used to normalise mRNA levels between different samples. The expression level of these genes, however, may vary between tissues or cells and may change under certain circumstances. Cytoskeleton genes have served as multifunctional tools for experimental studies as reference genes. Our previous studies have demonstrated that the expression of vimentin, one cytoskeletal protein, was increased in ultraviolet B (UVB)-irradiated fibroblasts. Thus, we examined the expression of other cytoskeleton protein genes, <it>ACTB </it>(<it>actin, beta</it>), <it>TUBA1A </it>(<it>tubulin, alpha 1a</it>), and <it>TUBB1 </it>(<it>tubulin, beta 1</it>), in human dermal fibroblasts irradiated by UVB to determine which of these candidates were the most appropriate reference genes.</p> <p>Results</p> <p>Quantitative real-time PCR followed by analysis with the NormFinder and geNorm software programmes was performed. The initial screening of the expression patterns demonstrated that the expression of <it>VIM </it>was suppressed after UVB irradiation at doses ≥25 mJ/cm<sup>2 </sup>and that the expression of <it>TUBA1A </it>was significantly reduced by UVB doses ≥75 mJ/cm<sup>2 </sup>in cultured human dermal fibroblasts. The analysis of the experimental data revealed <it>ACTB </it>to be the most stably expressed gene, followed by <it>GAPDH </it>(<it>aglyceraldehyde-3-phosphate dehydrogenase</it>), under these experimental conditions. By contrast, <it>VIM </it>was found to be the least stable gene. The combination of <it>ACTB </it>and <it>TUBB1 </it>was revealed to be the gene pair that introduced the least systematic error into the data normalisation.</p> <p>Conclusion</p> <p>The data herein provide evidence that <it>ACTB </it>and <it>TUBB1 </it>are suitable reference genes in human skin fibroblasts irradiated by UVB, whereas <it>VIM </it>and <it>TUBA1A </it>are not and should therefore be excluded as reference genes in any gene expression studies involving UVB-irradiated human skin fibroblasts.</p

    A non-catecholamine-producing sympathetic paraganglioma of the spermatic cord: the importance of performing candidate gene mutation analysis

    Get PDF
    textabstractBackground: Catecholamine-producing tumours are called pheochromocytomas when they are located in the adrenal gland and sympathetic paragangliomas when they are located elsewhere in the abdomen. Rarely these tumours do not produce catecholamines and even more rarely they arise in the spermatic cord. Over the past decade, systematic mutation analysis of apparently sporadic cases of pheochromocytomas and paragangliomas has elucidated the frequent presence of germ line mutations in one of five candidate genes, including RET, VHL, SDHB, SDHC, and SDHD. Clinical history and methods: We describe a 45-year-old man with a non catecholamine-producing paraganglioma of the spermatic cord. We performed SDHB immunohistochemistry and performed mutation analysis of the SDHB, SDHC, and SDHD genes. Results: There was no staining of tumour cells with SDHB immunohistochemistry, indicative of an SDH mutation. Mutation analysis demonstrated a germ line SDHD mutation (p.Val147Met). Conclusions: Systematic mutation analysis is required in paraganglioma patients for the detection of germ line mutations. This should be preceded by SDHB immunohistochemistry to limit the number of genes to be tested

    Cryo-electron microscopy of viruses

    Get PDF
    Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare favourably with any other electron microscopical method

    Identification and Characterization of RBM44 as a Novel Intercellular Bridge Protein

    Get PDF
    Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14

    Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria

    Get PDF
    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells
    corecore