317 research outputs found

    Short Communication Reflectance-based detection of oxidizers in ambient air

    Get PDF
    This study used two types of paper supported materials with a prototype, reflectance-based detector for indication of hydrogen peroxide vapor under ambient laboratory conditions. Titanyl based indicators provide detection through reaction of the indicator resulting in a dosimeter type sensor, while porphyrin based indicators provide a reversible interaction more suitable to continuous monitoring applications. These indicators provide the basis for discussion of characteristics important to design of a sensor system including the application environment and duration, desired reporting frequency, and target specificity

    Short Communication Reflectance-based detection of oxidizers in ambient air

    Get PDF
    This study used two types of paper supported materials with a prototype, reflectance-based detector for indication of hydrogen peroxide vapor under ambient laboratory conditions. Titanyl based indicators provide detection through reaction of the indicator resulting in a dosimeter type sensor, while porphyrin based indicators provide a reversible interaction more suitable to continuous monitoring applications. These indicators provide the basis for discussion of characteristics important to design of a sensor system including the application environment and duration, desired reporting frequency, and target specificity

    Tumor-associated endothelial cells display GSTP1 and RARβ2 promoter methylation in human prostate cancer

    Get PDF
    BACKGROUND: A functional blood supply is essential for tumor growth and proliferation. However, the mechanism of blood vessel recruitment to the tumor is still poorly understood. Ideally, a thorough molecular assessment of blood vessel cells would be critical in our comprehension of this process. Yet, to date, there is little known about the molecular makeup of the endothelial cells of tumor-associated blood vessels, due in part to the difficulty of isolating a pure population of endothelial cells from the heterogeneous tissue environment. METHODS: Here we describe the use of a recently developed technique, Expression Microdissection, to isolate endothelial cells from the tumor microenvironment. The methylation status of the dissected samples was evaluated for GSTP1 and RARβ2 promoters via the QMS-PCR method. RESULTS: Comparing GSTP1 and RARβ2 promoter methylation data, we show that 100% and 88% methylation is detected, respectively, in the tumor areas, both in epithelium and endothelium. Little to no methylation is observed in non-tumor tissue areas. CONCLUSION: We applied an accurate microdissection technique to isolate endothelial cells from tissues, enabling DNA analysis such as promoter methylation status. The observations suggest that epigenetic alterations may play a role in determining the phenotype of tumor-associated vasculature

    A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation

    Get PDF
    SummaryCalcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA−/− mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis

    The Influence of Organizational Context on Quitting Intention

    Full text link
    This study uses multilevel methods to investigate the effects of organizational context on job satisfaction and quitting intention among staff working in long-term mental health care settings. Two types of organizational features are examined: group job satisfaction and structural features of the work unit (unit size, workload, and level of client functioning on the unit). A review of the organizational literature reveals that most empirical research has investigated job satisfaction at the individual level of analysis rather than the group level. The authors argue that the affective context of a group has real and measurable consequences for individual attitudes and behavior, independent of individual attitudes toward the job. Using multilevel modeling, study findings support the premise that group job satisfaction exercises effects on intention to quit independent of individuals’ dispositions toward their jobs. These effects are both direct and interactive. The findings underscore the importance of affective context in shaping individual attitudes and behavioral intentions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68775/2/10.1177_0164027599212003.pd

    Comparison of inpatient vs. outpatient anterior cervical discectomy and fusion: a retrospective case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal surgery is increasingly being done in the outpatient setting. We reviewed our experience with inpatient and outpatient single-level anterior cervical discectomy and fusion with plating (ACDF+P).</p> <p>Methods</p> <p>All patients undergoing single-level anterior cervical discectomy and fusion with plating between August 2005 and May 2007 by two surgeons (RPB or JAF) were retrospectively reviewed. All patients underwent anterior cervical microdiscectomy, arthrodesis using structural allograft, and titanium plating. A planned change from doing ACDF+P on an inpatient basis to doing ACDF+P on an outpatient basis was instituted at the midpoint of the study. There were no other changes in technique, patient selection, instrumentation, facility, or other factors. All procedures were done in full-service hospitals accommodating outpatient and inpatient care.</p> <p>Results</p> <p>64 patients underwent ACDF+P as inpatients, while 45 underwent ACDF+P as outpatients. When outpatient surgery was planned, 17 patients were treated as inpatients due to medical comorbidities (14), older age (1), and patient preference (2). At a mean follow-up of 62.4 days, 90 patients had an excellent outcome, 19 patients had a good outcome, and no patients had a fair or poor outcome. There was no significant difference in outcome between inpatients and outpatients. There were 4 complications, all occurring in inpatients: a hematoma one week post-operatively requiring drainage, a cerebrospinal fluid leak treated with lumbar drainage, syncope of unknown etiology, and moderate dysphagia.</p> <p>Conclusion</p> <p>In this series, outpatient ACDF+P was safe and was not associated with a significant difference in outcome compared with inpatient ACDF+P.</p

    Removing leakage-induced correlated errors in superconducting quantum error correction

    Full text link
    Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing

    Propagation of Epileptiform Events across the Corpus Callosum in a Cingulate Cortical Slice Preparation

    Get PDF
    We report on a novel mouse in vitro brain slice preparation that contains intact callosal axons connecting anterior cingulate cortices (ACC). Callosal connections are demonstrated by the ability to regularly record epileptiform events between hemispheres (bilateral events). That the correlation of these events depends on the callosum is demonstrated by the bisection of the callosum in vitro. Epileptiform events are evoked with four different methods: (1) bath application of bicuculline (a GABA-A antagonist); (2) bicuculline+MK801 (an NMDA receptor antagonist), (3) a zero magnesium extracellular solution (0Mg); (4) focal application of bicuculline to a single cortical hemisphere. Significant increases in the number of epileptiform events, as well as increases in the ratio of bilateral events to unilateral events, are observed during bath applications of bicuculline, but not during applications of bicuculline+MK-801. Long ictal-like events (defined as events >20 seconds) are only observed in 0Mg. Whole cell patch clamp recordings of single neurons reveal strong feedforward inhibition during focal epileptiform events in the contralateral hemisphere. Within the ACC, we find differences between the rostral areas of ACC vs. caudal ACC in terms of connectivity between hemispheres, with the caudal regions demonstrating shorter interhemispheric latencies. The morphologies of many patch clamped neurons show callosally-spanning axons, again demonstrating intact callosal circuits in this in vitro preparation

    Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga \u3ci\u3eNannochloropsis oceanica\u3c/i\u3e CCMP1779

    Get PDF
    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogendepleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus
    • …
    corecore