18 research outputs found

    Illuminating subduction zone rheological properties in the wake of a giant earthquake

    Get PDF
    Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 Mw 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle

    Ecological strategy for soil contaminated with mercury

    Get PDF
    Aims The paper presents results from plot experiments aimed at the development of an ecological strategy for soil contaminated with mercury. Meadow grass (Poa pratensis) was tested on mercury contaminated soil in a former chlor-alkali plant (CAP) in southern Poland for its phytoremediation potential. Methods The stabilisation potential of the plants was investigated on plots without additives and after the addition of granular sulphur. Biomass production, uptake and distribution of mercury by plants, as well as leachates and rhizosphere microorganisms were investigated, along with the growth and vitality of plants during one growing season. Results The analysed plants grew easily on mercury contaminated soil, accumulating lower amounts of mercury, especially in the roots, from soil with additive of granular sulphur (0.5 % w/w) and sustained a rich microbial population in the rhizosphere. After amendment application the reduction of Hg evaporation was observed. Conclusions The obtained results demonstrate the potential of using Poa pratensis and sulphur for remediation of mercury contaminated soil and reduction of the Hg evaporation from soil. In the presented study, methods of Hg reduction on “hot spots” were proposed, with a special focus on environmental protection. This approach provides a simple remediation tool for large areas heavily contaminated with mercury

    Cationic Host Defence Peptides:Potential as Antiviral Therapeutics

    Get PDF
    There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics
    corecore