13 research outputs found

    Preliminary and Accelerated Stability Study of Melissa Officinalis Syrup Cultivated in the South of Tocantins

    Get PDF
    Melissa officinalis L. (Lamiaceae) is known as a true lemon balm and is popularly used in traditional medicine as a tranquilizer. The present research aimed to propose a source of syrup based on the tincture of M. officinalis and perform preliminary and accelerated stability tests, and microbiological evaluation. The leaves of M. officinalis were collected and after botanical identification, the raw material processing step was followed to obtain the dye. The tincture obtained was used to prepare the syrup based on M. Officinalis. The syrup was used as steps of physical-chemical and microbiological quality control. It was found that the M. Officinalis syrup, in the analysis of pH, organoleptic characteristics, density, volume, and microbiological assay, is by the consulted literature. The observed results indicate that the syrup of M. Officinalis is within the defined parameters, which guarantees the patient the efficacy and safety of the herbal medicine

    Complete genome sequence of a clinical Bordetella pertussis isolate from Brazil

    No full text
    There has been a resurgence in the number of pertussis cases in Brazil and around the world. Here, the genome of a clinical Bordetella pertussis strain (Bz181) that was recently isolated in Brazil is reported. Analysis of the virulence-associated genes defining the pre- and post-vaccination lineages revealed the presence of the prn2-ptxS1A-fim3B-ptxP3 allelic profile in Bz181, which is characteristic of the current pandemic lineage. A putative metallo-β-lactamase gene presenting all of the conserved zinc-binding motifs that characterise the catalytic site was identified, in addition to a multidrug efflux pump of the RND family that could confer resistance to erythromycin, which is the antibiotic of choice for treating pertussis disease

    Complete genome sequence of a clinical Bordetella pertussis isolate from Brazil

    No full text
    Made available in DSpace on 2015-05-19T13:26:09Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) bruno_andradeetal_IOC_2014.pdf: 735722 bytes, checksum: d50898d8e274376c69fdf0e751b29e2f (MD5) Previous issue date: 2014Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular e Microorganismos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular e Microorganismos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular e Microorganismos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular e Microorganismos. Rio de Janeiro, RJ, BrasilLaboratório Central de Saúde Pública Dr Milton Sobral. Recife, PE, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular e Microorganismos. Rio de Janeiro, RJ, Brasil.There has been a resurgence in the number of pertussis cases in Brazil and around the world. Here, the genome of a clinical Bordetella pertussis strain (Bz181) that was recently isolated in Brazil is reported. Analysis of the virulence-associated genes defining the pre- and post-vaccination lineages revealed the presence of the prn2-ptxS1A-fim3B-ptxP3 allelic profile in Bz181, which is characteristic of the current pandemic lineage. A putative metallo-β-lactamase gene presenting all of the conserved zinc-binding motifs that characterise the catalytic site was identified, in addition to a multidrug efflux pump of the RND family that could confer resistance to erythromycin, which is the antibiotic of choice for treating pertussis disease

    A one-step multiplex PCR to identify Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae in the clinical routine

    No full text
    This work was supported by FAPERJ and PNPD-CAPES fellowships and CNPq grantFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microorganismos. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microorganismos. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microorganismos. Rio de Janeiro, RJ. Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Microbiologia Ambiental. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microorganismos. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genética Molecular de Microorganismos. Rio de Janeiro, RJ. Brasil.Klebsiella pneumoniae, Klebsiella variicola and Klebsiella quasipneumoniae are difficult to differentiate phenotypically, leading to misinterpretation of their infection prevalence. We propose a multiplex PCR for blaSHV, blaLEN and blaOKP and their flanking gene (deoR). Since this scheme focuses only on chromosomal genes, it will be feasible for Klebsiella identification in the clinical routine

    Population and Genetic Study of <i>Vibrio cholerae</i> from the Amazon Environment Confirms that the <i>WASA-1</i> Prophage Is the Main Marker of the Epidemic Strain that Circulated in the Region

    Get PDF
    <div><p><i>Vibrio cholerae</i> is a natural inhabitant of many aquatic environments in the world. Biotypes harboring similar virulence-related gene clusters are the causative agents of epidemic cholera, but the majority of strains are harmless to humans. Since 1971, environmental surveillance for potentially pathogenic <i>V. cholerae</i> has resulted in the isolation of many strains from the Brazilian Amazon aquatic ecosystem. Most of these strains are from the non-O1/non-O139 serogroups (NAGs), but toxigenic O1 strains were isolated during the Latin America cholera epidemic in the region (1991-1996). A collection of environmental <i>V. cholerae</i> strains from the Brazilian Amazon belonging to pre-epidemic (1977-1990), epidemic (1991-1996), and post-epidemic (1996-2007) periods in the region, was analyzed. The presence of genes related to virulence within the species and the genetic relationship among the strains were studied. These variables and the information available concerning the strains were used to build a Bayesian multivariate dependency model to distinguish the importance of each variable in determining the others. Some genes related to the epidemic strains were found in environmental NAGs during and after the epidemic. Significant diversity among the virulence-related gene content was observed among O1 strains isolated from the environment during the epidemic period, but not from clinical isolates, which were analyzed as controls. Despite this diversity, these strains exhibited similar PFGE profiles. PFGE profiles were significant while separating potentially epidemic clones from indigenous strains. No significant correlation with isolation source, place or period was observed. The presence of the <i>WASA-1</i> prophage significantly correlated with serogroups, PFGE profiles, and the presence of virulence-related genes. This study provides a broad characterization of the environmental <i>V. cholerae</i> population from the Amazon, and also highlights the importance of identifying precisely defined genetic markers such as the <i>WASA-1</i> prophage for the surveillance of cholera.</p> </div

    Geographical distribution of <i>V. cholerae</i> isolates.

    No full text
    <p>The geographical location of rivers, streams, and wastewater plants from where the strains that were used in this study were isolated are indicated in the map. The sizes of markers indicate the number of strains in each location, markers are centered in the cities where the strains were isolated (see Table S1). Belem (yellow), Barcarena (light green), Maruda (pink), Macapá (dark green), Oiapoque (light blue), Manaus (red), Tabatinga (light blue), Rio Branco (purple), and Santa Rosa (orange). Quantities of strains isolated in each period are indicated in the bar graphs. </p

    Dependency model of multivariate data from strains.

    No full text
    <p>Bayesian network representing conditional probabilities of variables that were available for the strains. Arcs are colored according to the impact in the posterior probability of the model when the arc is removed. The network represents the end result of the evaluation of 4.5 * 10<sup>7</sup> different topologies, in which the last 1.4 * 10<sup>7</sup> evaluations did not yield a better model. The network was constructed using the online B-Course software [42]. </p

    O1 genotypes.

    No full text
    <p>The presence and absence of virulence-related genes are represented, respectively, by blue and white squares. The strains are grouped in colored bars according to their PFGE cluster (Fig. 4): from top to bottom are groups 1 (purple), 2 (red), 3 (blue), 9 (yellow), 6 (orange), and 8 (green). The colors highlighting the strain keys correspond to the isolation sources. Strains highlighted pink were isolated from wastewater, blue from superficial water, green from superficial stream water, and black from clinical sources.</p
    corecore