677 research outputs found

    A Mobile Agent-Based Electronic Marketplace

    Get PDF
    The electronic marketplace is a new medium for exchanging information, goods, services, and payments. The marketplace houses infrastructure, facilitates transactions, and matches buyers with sellers. An agent-based marketplace allows corporate data to be maintained by local buyers and sellers and transferred to the marketplace only when orders are matched. This provides participating companies with autonomy and independence. This study proposes a framework of using the mobile agent to demonstrate autonomous behavior in the electronic marketplace

    Fat suppression for ultrashort echo time imaging using a novel soft-hard composite radiofrequency pulse.

    Get PDF
    PurposeTo design a soft-hard composite pulse for fat suppression and water excitation in ultrashort echo time (UTE) imaging with minimal short T2 signal attenuation.MethodsThe composite pulse contains a narrow bandwidth soft pulse centered on the fat peak with a small negative flip angle (-α) and a short rectangular pulse with a small positive flip angle (α). The fat magnetization experiences both tipping-down and -back with an identical flip angle and thus returns to the equilibrium state, leaving only the excited water magnetization. Bloch simulations, as well as knee, tibia, and ankle UTE imaging studies, were performed to investigate the effectiveness of fat suppression and corresponding water signal attenuation. A conventional fat saturation (FatSat) module was used for comparison. Signal suppression ratio (SSR), defined as the ratio of signal difference between non-fat-suppression and fat-suppression images over the non-fat-suppression signal, was introduced to evaluate the efficiency of the composite pulse.ResultsNumerical simulations demonstrate that the soft-hard pulse has little saturation effect on short T2 water signals. Knee, tibia, and ankle UTE imaging results suggest that comparable fat suppression can be achieved with the soft-hard pulse and the FatSat module. However, much less water saturation is induced by the soft-hard pulse, especially for short T2 tissues, with SSRs reduced from 71.8 ± 6.9% to 5.8 ± 4.4% for meniscus, from 68.7 ± 5.5% to 7.7 ± 7.6% for bone, and from 62.9 ± 12.0% to 4.8 ± 3.2% for the Achilles tendon.ConclusionThe soft-hard composite pulse can suppress fat signals in UTE imaging with little signal attenuation on short T2 tissues

    Advanced magnetic resonance imaging of cartilage components in haemophilic joints reveals that cartilage hemosiderin correlates with joint deterioration.

    Get PDF
    IntroductionEvidence suggests that toxic iron is involved in haemophilic joint destruction.AimTo determine whether joint iron deposition is linked to clinical and imaging outcomes in order to optimize management of haemophilic joint disease.MethodsAdults with haemophilia A or haemophilia B (n = 23, ≥ age 21) of all severities were recruited prospectively to undergo assessment with Hemophilia Joint Health Scores (HJHS), pain scores (visual analogue scale [VAS]) and magnetic resonance imaging (MRI) at 3T using conventional MRI protocols and 4-echo 3D-UTE-Cones sequences for one affected arthropathic joint. MRI was scored blinded by two musculoskeletal radiologists using the International Prophylaxis Study Group (IPSG) MRI scale. Additionally, UTE-T2* values of cartilage were quantified. Correlations between parameters were performed using Spearman rank correlation. Two patients subsequently underwent knee arthroplasty, which permitted linking of histological findings (including Perl's reaction) with MRI results.ResultsMRI scores did not correlate with pain scores or HJHS. Sixteen joints had sufficient cartilage for UTE-T2* analysis. T2* values for cartilage correlated inversely with HJHS (rs  = -0.81, P < 0.001) and MRI scores (rs  = -0.52, P = 0.037). This was unexpected since UTE-T2* values decrease with better joint status in patients with osteoarthritis, suggesting that iron was present and responsible for the effects. Histological analysis of cartilage confirmed iron deposition within chondrocytes, associated with low UTE-T2* values.ConclusionsIron accumulation can occur in cartilage (not only in synovium) and shows a clear association with joint health. Cartilage iron is a novel biomarker which, if quantifiable with innovative joint-specific MRI T2* sequences, may guide treatment optimization

    Train Small, Model Big: Scalable Physics Simulators via Reduced Order Modeling and Domain Decomposition

    Full text link
    Numerous cutting-edge scientific technologies originate at the laboratory scale, but transitioning them to practical industry applications is a formidable challenge. Traditional pilot projects at intermediate scales are costly and time-consuming. An alternative, the E-pilot, relies on high-fidelity numerical simulations, but even these simulations can be computationally prohibitive at larger scales. To overcome these limitations, we propose a scalable, physics-constrained reduced order model (ROM) method. ROM identifies critical physics modes from small-scale unit components, projecting governing equations onto these modes to create a reduced model that retains essential physics details. We also employ Discontinuous Galerkin Domain Decomposition (DG-DD) to apply ROM to unit components and interfaces, enabling the construction of large-scale global systems without data at such large scales. This method is demonstrated on the Poisson and Stokes flow equations, showing that it can solve equations about 154015 - 40 times faster with only \sim 1%1\% relative error. Furthermore, ROM takes one order of magnitude less memory than the full order model, enabling larger scale predictions at a given memory limitation.Comment: 40 pages, 12 figures. Submitted to Computer Methods in Applied Mechanics and Engineerin

    The Public Health Impact of Paxlovid COVID-19 Treatment in the United States

    Get PDF
    The antiviral drug Paxlovid has been shown to rapidly reduce viral load. Coupled with vaccination, timely administration of safe and effective antivirals could provide a path towards managing COVID-19 without restrictive non-pharmaceutical measures. Here, we estimate the population-level impacts of expanding treatment with Paxlovid in the US using a multi-scale mathematical model of SARS-CoV-2 transmission that incorporates the within-host viral load dynamics of the Omicron variant. We find that, under a low transmission scenario (Re∼1.2) treating 20% of symptomatic cases would be life and cost saving, leading to an estimated 0.26 (95% CrI: 0.03, 0.59) million hospitalizations averted, 30.61 (95% CrI: 1.69, 71.15) thousand deaths averted, and US$52.16 (95% CrI: 2.62, 122.63) billion reduction in health- and treatment-related costs. Rapid and broad use of the antiviral Paxlovid could substantially reduce COVID-19 morbidity and mortality, while averting socioeconomic hardship
    corecore