18 research outputs found

    Inadequate Cerebrospinal Fluid Concentrations of Available Salvage Agents Further Impedes the Optimal Treatment of Multidrug-Resistant Enterococcus faecium Meningitis and Bacteremia

    No full text
    Background: Vancomycin-resistant Enterococcus faecium (VRE) in particular has evolved as an important cause of hospital acquired infection, especially in immunocompromised hosts. Methods: We present a complex case of a patient with relapsed acute myeloid leukemia who underwent allogenic hematopoietic stem cell transplantation complicated by persistent VRE bacteremia and meningitis. To optimize therapy, various blood and cerebrospinal fluid (CSF) samples were sent to a research laboratory for extensive susceptibility testing, pharmacokinetic analyses, and time-kill experiments. Results: In vitro testing revealed resistance to all first-line treatment options and CSF sampling demonstrated sub-optimal central nervous system concentrations achieved by each antimicrobial agent administered in relation to their respective MIC value. Time-kill analyses at observed CSF concentrations confirmed the lack of bactericidal activity despite use of a four-drug combination regimen. Conclusions: This work is the first to report CSF concentrations of oritavancin and tedizolid in humans and adds to the limited data regarding in vitro susceptibility of new antimicrobial agents such as eravacycline, omadacycline, and lefamulin against VRE. Our study provides new insights into various aspects of treatment of extensively drug-resistant Enterococcus faecium meningitis and bacteremia and supports the continued pursuit of precision medicine for these challenging cases

    The Antimicrobial Stewardship Approach to Combating Clostridium Difficile

    No full text
    Clostridium difficile remains a major public health threat and continues to contribute to excess morbidity, mortality and healthcare costs. Antimicrobial stewardship programs have demonstrated success in combating C. difficile, primarily through antibiotic restrictive strategies. As the incidence and prevalence of C. difficile associate disease continues to increase both in the hospital and community setting, additional stewardship approaches are needed. This manuscript reviews stewardship interventions that have been successful against C. difficile associated disease and proposes future tactics that antimicrobial stewardship programs may employ to develop a more global approach to combat this difficult pathogen

    Severe Sepsis Secondary to Persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus Bacteremia

    Get PDF
    Lysinibacillus and Paenibacillus are pervasive bacteria rarely associated with human disease. Less sophisticated microbiology techniques may frequently incorrectly identify these genera as Bacillus spp., often regarded as environmental contamination. This report describes a case of severe sepsis due to persistent Lysinibacillus and Paenibacillus bacteremia, identified by matrix-assisted laser desorption and ionization time-of-flight mass spectroscopy and 16S rRNA gene sequencing

    A Breath of Fresh Air in the Fog of Antimicrobial Resistance: Inhaled Polymyxins for Gram-Negative Pneumonia

    No full text
    Despite advancements in therapy, pneumonia remains the leading cause of death due to infectious diseases. Novel treatment strategies are desperately needed to optimize the antimicrobial therapy of patients suffering from this disease. One such strategy that has recently garnered significant attention is the use of inhaled antibiotics to rapidly achieve therapeutic concentrations directly at the site of infection. In particular, there is significant interest in the role of inhaled polymyxins for the treatment of nosocomial pneumonia, including ventilator-associated pneumonia, due to their retained activity against multi-drug resistant Gram-negative pathogens, including Acinetobacter baumannii and Pseudomonas aeruginosa. This review will provide a comprehensive overview of the pharmacokinetic/pharmacodynamic profile, clinical outcomes, safety, and potential role of inhaled polymyxins in clinical practice

    Clinical and economic impact of the introduction of a nucleic acid amplification assay for Clostridium difficile

    No full text
    Abstract Background The clinical outcomes and cost implications of a diagnostic shift from an EIA- to PCR-based assay for Clostridium difficile infection (CDI) have not been completely described in the literature. Methods The impact of the PCR-based assay on the incidence and duration of CDI therapy was compared to the EIA assay for patients with a negative CDI diagnostic result. Secondary clinical and economic outcomes were also evaluated. Independent predictors of receipt of antibiotic therapy were assessed via logistic regression. Results 141 EIA and 140 PCR patients were included. Significantly more patients were started or continued on anti-CDI antibiotic therapy after a known negative assay result in the EIA group (26 patients vs. 8 patients, P = 0.002). Duration of antibiotic therapy after a known negative result was significantly shorter in the PCR group (1 vs. 4 days, P = 0.029) and a 23% reduction in the number of tests obtained per patient was observed (1.41 ± 0.86 vs. 1.82 ± 1.35, P = 0.007). The over fourfold difference in per-test cost of the EIA assay (8.33vs.8.33 vs. 42.86, P < 0.0001) was offset by the overall medication costs required for the increased treatment in the EIA group (546.60vs.546.60 vs. 188.96, P = 0.191). Utilization of the EIA-based CDI assay was associated with increased odds of CDI treatment after a negative test (aOR 4.71, 95% CI 1.93–11.46, P = 0.001). Conclusion The transition from an EIA to PCR-based assay for diagnosing CDI resulted in a significant decrease in the number of patients treated and the duration of treatment in response to a negative test result. This significant decrease in treatment resulted in decreased costs offsetting the utilization of a more expensive molecular test for patients with a negative CDI diagnostic result

    Controversies in Antimicrobial Stewardship: Focus on New Rapid Diagnostic Technologies and Antimicrobials

    No full text
    Antimicrobial stewardship programs (ASPs) are challenged with ensuring appropriate antimicrobial use while minimizing expenditures. ASPs have consistently demonstrated improved patient outcomes and significant cost reductions but are continually required to justify the costs of their existence and interventions due to the silo mentality often adopted by hospital administrators. As new technologies and antimicrobials emerge, ASPs are in a constant tug-of-war between providing optimal clinical outcomes and ensuring cost containment. Additionally, robust data on cost-effectiveness of new rapid diagnostic technologies and antimicrobials with subsequent ASP interventions to provide justification are lacking. As the implementation of an ASP will soon be mandatory for acute care hospitals in the United States, ASPs must find ways to justify novel interventions to align themselves with healthcare administrators. This review provides a framework for the justification of implementing a rapid diagnostic test or adding a new antimicrobial to formulary with ASP intervention, reviews approaches to demonstrating cost-effectiveness, and proposes methods for which ASPs may reduce healthcare expenditures via alternative tactics

    Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States

    No full text
    Antimicrobial resistance is a global public health threat, and gram-negative bacteria, such as Enterobacterales and Pseudomonas aeruginosa, are particularly problematic with difficult-to-treat resistance phenotypes. To reduce morbidity and mortality, a reduction in the time to effective antimicrobial therapy (TTET) is needed, especially among critically ill patients. The antibiogram is an effective clinical tool that can provide accurate antimicrobial susceptibility information and facilitate early antimicrobial optimization, decrease TTET, and improve outcomes such as mortality, hospital length of stay, and costs. Guidance is lacking on how to validate the susceptibility to new antibacterial agents. Commonly used traditional and combination antibiograms may not adequately assist clinicians in making treatment decisions. Challenges with the current susceptibility testing of new β-lactam/β-lactamase inhibitor combinations persist, impacting the appropriate antibacterial choice and patient outcomes. Novel antibiograms such as syndromic antibiograms that incorporate resistant gram-negative phenotypes and/or minimum inhibitory concentration distributions may assist in determining the need for earlier susceptibility testing or help define an earlier optimal use of the new β-lactam/β-lactamase inhibitors. The purpose of this review is to emphasize novel antibiogram approaches that are capable of improving the time to susceptibility testing and administration for new β-lactam/β-lactamase inhibitors so that they are earlier in a patient’s treatment course

    Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects

    No full text
    The steady-state concentrations of meropenem and the β-lactamase inhibitor RPX7009 in plasma, epithelial lining fluid (ELF), and alveolar macrophage (AM) concentrations were obtained in 25 healthy, nonsmoking adult subjects. Subjects received a fixed combination of meropenem (2 g) and RPX7009 (2 g) administered every 8 h, as a 3-h intravenous infusion, for a total of three doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject at 1.5, 3.25, 4, 6, or 8 h after the start of the last infusion. Meropenem and RPX7009 achieved a similar time course and magnitude of concentrations in plasma and ELF. The mean pharmacokinetic parameters ± the standard deviations of meropenem and RPX7009 determined from serial plasma concentrations were as follows: C(max) = 58.2 ± 10.8 and 59.0 ± 8.4 μg/ml, V(ss) = 16.3 ± 2.6 and 17.6 ± 2.6 liters; CL = 11.1 ± 2.1 and 10.1 ± 1.9 liters/h, and t(1/2) = 1.03 ± 0.15 and 1.27 ± 0.21 h, respectively. The intrapulmonary penetrations of meropenem and RPX7009 were ca. 63 and 53%, respectively, based on the area under the concentration-time curve from 0 to 8 h (AUC(0–8)) values of ELF and total plasma concentrations. When unbound plasma concentrations were considered, ELF penetrations were 65 and 79% for meropenem and RPX7009, respectively. Meropenem concentrations in AMs were below the quantitative limit of detection, whereas median concentrations of RPX7009 in AMs ranged from 2.35 to 6.94 μg/ml. The results from the present study lend support to exploring a fixed combination of meropenem (2 g) and RPX7009 (2 g) for the treatment of lower respiratory tract infections caused by meropenem-resistant Gram-negative pathogens susceptible to the combination of meropenem-RPX7009
    corecore