447 research outputs found

    TurbuStat: Turbulence Statistics in Python

    Full text link
    We present TurbuStat (v1.0): a Python package for computing turbulence statistics in spectral-line data cubes. TurbuStat includes implementations of fourteen methods for recovering turbulent properties from observational data. Additional features of the software include: distance metrics for comparing two data sets; a segmented linear model for fitting lines with a break-point; a two-dimensional elliptical power-law model; multi-core fast-fourier-transform support; a suite for producing simulated observations of fractional Brownian Motion fields, including two-dimensional images and optically-thin HI data cubes; and functions for creating realistic world coordinate system information for synthetic observations. This paper summarizes the TurbuStat package and provides representative examples using several different methods. TurbuStat is an open-source package and we welcome community feedback and contributions.Comment: Accepted in AJ. 21 pages, 8 figure

    Assessing the Impact of Astrochemistry on Molecular Cloud Turbulence Statistics

    Full text link
    We analyze hydrodynamic simulations of turbulent, star-forming molecular clouds that are post-processed with the photo-dissociation region astrochemistry code 3D-PDR. We investigate the sensitivity of 15 commonly applied turbulence statistics to post-processing assumptions, namely variations in gas temperature, abundance and external radiation field. We produce synthetic 12^{12}CO(1-0) and CI(3^{3}P1_{1}-3^{3}P0_{0}) observations and examine how the variations influence the resulting emission distributions. To characterize differences between the datasets, we perform statistical measurements, identify diagnostics sensitive to our chemistry parameters, and quantify the statistic responses by using a variety of distance metrics. We find that multiple turbulent statistics are sensitive not only to the chemical complexity but also to the strength of the background radiation field. The statistics with meaningful responses include principal component analysis, spatial power spectrum and bicoherence. A few of the statistics, such as the velocity coordinate spectrum, are primarily sensitive to the type of tracer being utilized, while others, like the delta-variance, strongly respond to the background radiation field. Collectively, these findings indicate that more realistic chemistry impacts the responses of turbulent statistics and is necessary for accurate statistical comparisons between models and observed molecular clouds.Comment: 27 pages, 21 figures, accepted to Ap

    Application of the Density Matrix Renormalization Group in momentum space

    Full text link
    We investigate the application of the Density Matrix Renormalization Group (DMRG) to the Hubbard model in momentum-space. We treat the one-dimensional models with dispersion relations corresponding to nearest-neighbor hopping and 1/r1/r hopping and the two-dimensional model with isotropic nearest-neighbor hopping. By comparing with the exact solutions for both one-dimensional models and with exact diagonalization in two dimensions, we first investigate the convergence of the ground-state energy. We find variational convergence of the energy with the number of states kept for all models and parameter sets. In contrast to the real-space algorithm, the accuracy becomes rapidly worse with increasing interaction and is not significantly better at half filling. We compare the results for different dispersion relations at fixed interaction strength over bandwidth and find that extending the range of the hopping in one dimension has little effect, but that changing the dimensionality from one to two leads to lower accuracy at weak to moderate interaction strength. In the one-dimensional models at half-filling, we also investigate the behavior of the single-particle gap, the dispersion of spinon excitations, and the momentum distribution function. For the single-particle gap, we find that proper extrapolation in the number of states kept is important. For the spinon dispersion, we find that good agreement with the exact forms can be achieved at weak coupling if the large momentum-dependent finite-size effects are taken into account for nearest-neighbor hopping. For the momentum distribution, we compare with various weak-coupling and strong-coupling approximations and discuss the importance of finite-size effects as well as the accuracy of the DMRG.Comment: 15 pages, 11 eps figures, revtex

    Stretching and squeezing of sessile dielectric drops by the optical radiation pressure

    Full text link
    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semi-angle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus". These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale

    On the Nature of Small Planets around the Coolest Kepler Stars

    Get PDF
    We constrain the densities of Earth- to Neptune-size planets around very cool (Te =3660-4660K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index alpha ~ 4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with alpha = 2 is ruled out unless our Doppler errors are >= 5m/s, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of gamma rocky planets (alpha = 3.85) and 1-gamma gas-rich planets (alpha = 2), then gamma > 0.5 unless Doppler errors are >=4 m/s. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact.Comment: Accepted to the Astrophysical Journa

    Spin-flip scattering in the quantum Hall regime

    Full text link
    We present a microscopic theory of spin-orbit coupling in the integer quantum Hall regime. The spin-orbit scattering length is evaluated in the limit of long-range random potential. The spin-flip rate is shown to be determined by rare fluctuations of anomalously high electric field. A mechanism of strong spin-orbit scattering associated with exchange-induced spontaneous spin-polarization is suggested. Scaling of the spin-splitting of the delocalization transition with the strength of spin-orbit and exchange interactions is also discussed.Comment: References added, small additional comments, to appear in Phys. Rev. B; 23 pages, RevTeX 3.
    • …
    corecore