457 research outputs found

    Characterization of Dimethylsulfoxide / Glycerol Mixtures: A Binary Solvent System for the Study of "Friction-Dependent" Chemical Reactivity

    Full text link
    The properties of binary mixtures of dimethylsulfoxide and glycerol, measured by several techniques, are reported. Special attention is given to those properties contributing or affecting chemical reactions. In this respect the investigated mixture behaves as a relatively simple solvent and it is especially well suited for studies on the influence of viscosity in chemical reactivity. This is due to the relative invariance of the dielectric properties of the mixture. However, special caution must be taken with specific solvation, as the hydrogen-bonding properties of the solvent changes with the molar fraction of glycerol.Comment: 49 pages including appendix, 20 figures and 89 reference

    Excited-State Dynamics of Donor−Acceptor Bridged Systems Containing a Boron−Dipyrromethene Chromophore:  Interplay between Charge Separation and Reorientational Motion

    Get PDF
    The excited-state dynamics of a series of electron donor−acceptor bridged systems (DABS) consisting of a boron−dipyrromethene chromophore covalently linked to a dinitro-substituted triptycene has been investigated using femtosecond time-resolved spectroscopy. The chromophores differ by the number of bromine atom substituents. The fluorescence lifetime of the DABS without any bromine atom is strongly reduced when going from toluene to polar solvents, this shortening being already present in chloroform. This effect is about 10 times weaker with a single bromine atom and negligible with two bromine atoms on the chromophore. The excited-state lifetime shortening is ascribed to a charge transfer from the excited chromophore to a nitrobenzene moiety, the driving force of this process depending on the number of bromine substituents. The occurrence of this process is further confirmed by the investigation of the excited-state dynamics of the chromophore alone in pure nitrobenzene. Surprisingly, no correlation between the charge separation time constant and the dielectric properties of the solvents could be observed. However, a good correlation between the charge separation time constant and the diffusional reorientation time of the chromophore alone, measured by fluorescence anisotropy, was found. Quantum chemistry calculations suggest that quasi-free rotation about the single bond linking the chromophore to the triptycene moiety permits a sufficient coupling of the donor and the acceptor to ensure efficient charge separation. The charge separation dynamics in these molecules is thus controlled by the reorientational motion of the donor relative to the acceptor

    Особенности электрохимического осаждения тугоплавких сплавов на алмазах

    Get PDF
    The analysis of theoretical foundations of electrochemical separation of refractory elements (tungsten and molybdenum) from aqueous solutions of electrolytes and practical production of refractory alloys (nickel-tungsten and nickel-molybdenum) for diamond grit’s metal coatings is shown. The influence of current load on the metallization degree and alloy output current is established. The structure of the surface coatings, their composition and effect of composition on the dynamic strength of coated diamond powders are defined. The areas for further work on granulation of high-strength metal-coated diamond grits and the creation of heterogeneous wear-resistant metal-diamond structures are identified

    Intramolecular Charge-Transfer Dynamics in Covalently Linked Perylene−Dimethylaniline and Cyanoperylene−Dimethylaniline

    Get PDF
    The excited-state dynamics of covalently linked electron donor−acceptor systems consisting of N,N-dimethylaniline (DMA) as electron donor and either perylene (Pe) or cyanoperylene (CNPe) as acceptor has been investigated in a large variety of solvents, including a room-temperature ionic liquid, by using femtosecond time-resolved fluorescence and absorption spectroscopy. The negligibly small solvent dependence of the absorption spectrum of both compounds and the strong solvatochromism of the fluorescence are interpreted by a model where optical excitation results in the population of a locally excited state (LES) and emission takes place from a charge-separated state (CSS). This interpretation is supported by the fluorescence up-conversion and the transient absorption measurements that reveal substantial spectral dynamics in polar solvents only, occurring on time scales going from a few hundreds of femtoseconds in acetonitrile to several tens of picoseconds in the ionic liquid. The early transient absorption spectra are similar to those found in nonpolar solvents and are ascribed to the LES absorption. The late spectra due to CSS absorption show bands that are red-shifted relative to those of the radical anion of the acceptor moiety by an amount that depends on solvent polarity, pointing to partial charge separation. Global analysis of the time-resolved data indicates that the charge separation dynamics in PeDMA is essentially solvent controlled, whereas that in CNPeDMA is faster than diffusive solvation, this difference being accounted for by a larger driving force for charge separation in the latter. On the other hand, the CSS lifetime of PeDMA is of the order of a few nanoseconds independently of the solvent, whereas that of CNPeDMA decreases with increasing solvent polarity from a few nanoseconds to a few hundreds of picoseconds. Comparison of these results with previously published data on the fluorescence quenching of Pe and CNPe in pure DMA shows that the charge separation and the ensuing charge recombination occur on similar time scales independently of whether these processes are intra- or intermolecular

    Effect of the Excitation Wavelength on the Ultrafast Charge Recombination Dynamics of Donor−Acceptor Complexes in Polar Solvents

    Get PDF
    The effect of the excitation wavelength on the charge recombination (CR) dynamics of several donor−acceptor complexes (DACs) composed of benzene derivatives as donors and of tetracyanoethylene or pyromellitic dianhydride as acceptors has been investigated in polar solvents using ultrafast time-resolved spectroscopy. Three different wavelength effects have been observed. (1) With complexes exhibiting two well-separated charge-transfer bands, the CR dynamics was found to be slower by a factor of about 1.5 upon excitation in the high-energy band. This effect was measured in both fast and slow relaxing solvents and was discussed in terms of different DAC geometries. (2) When the CR is faster than diffusive solvation, a slowing down of the CR with increasing excitation wavelength accompanied by an increase of the nonexponential character of the dynamics was measured. This effect appears only when exciting on the red edge of the charge-transfer absorption band. (3) When the driving force for CR is small, both nonequilibrium (hot) and thermally activated CR pathways can be operative. The results obtained with such a complex indicate that the relative contribution of these two paths depends on the excitation wavelength

    Exciton Formation, Relaxation, and Decay in PCDTBT

    Get PDF
    The nature and time evolution of the primary excitations in the pristine conjugated polymer, PCDTBT, are investigated by femtosecond-resolved fluorescence up-conversion spectroscopy. The extensive study includes data from PCDTBT thin film and from PCDTBT in chlorobenzene solution, compares the fluorescence dynamics for several excitation and emission wavelengths, and is complemented by polarization-sensitive measurements. The results are consistent with the photogeneration of mobile electrons and holes by interband π−π* transitions, which then self-localize within about 100 fs and evolve to a bound singlet exciton state in less than 1 ps. The excitons subsequently undergo successive migrations to lower energy localized states, which exist as a result of disorder. In parallel, there is also slow conformational relaxation of the polymer backbone. While the initial self-localization occurs faster than the time resolution of our experiment, the exciton formation, exciton migration, and conformational changes lead to a progressive relaxation of the inhomogeneously broadened emission spectrum with time constants ranging from about 500 fs to tens of picoseconds. The time scales found here for the relaxation processes in pristine PCDTBT are compared to the time scale (<0.2 ps) previously reported for photoinduced charge transfer in phase-separated PCDTBT:fullerene blends (Phys. Rev. B 2010, 81, 125210). We point out that exciton formation and migration in PCDTBT occur at times much longer than the ultrafast photoinduced electron transfer time in PCDTBT:fullerene blends. This disparity in time scales is not consistent with the commonly proposed idea that photoinduced charge separation occurs after diffusion of the polymer exciton to a fullerene interface. We therefore discuss alternative mechanisms that are consistent with ultrafast charge separation before localization of the primary excitation to form a bound exciton

    Optoelectronically mismatched oligophenylethynyl-naphthalenediimide SHJ architectures

    Get PDF
    The objective of this study was to evaluate the possibility of photoinduced stack/rod electron transfer in surface “zipper” architectures composed of stacks of blue (B) naphthalenediimides (NDIs) along strings of oligophenylethynyl (OPE) rods. The synthesis and characterization of anionic and cationic multichromophoric OPE-B systems are reported. Absorption spectra suggest that in OPE-B systems, planarity and thus absorption and conductivity of the OPE can possibly be modulated by intramolecular stacking of the surrounding NDIs, although interfering contributions from aggregation remain to be differentiated. Among surface architectures constructed with OPE-B and POP-B systems by zipper and layer-by-layer (LBL) assembly, photocurrents generated by OPE-B zippers exhibit the best critical thickness and fill factors. These findings confirm the existence and functional relevance of topologically matching zipper architectures. In OPE-B zippers, OPEs generate much more photocurrent than the blue NDIs. Ultrafast electron transfer from OPEs to NDIs accounts for these photocurrents, providing wavelength-controlled access to rod–stack charge separation, and thus to formal supramolecular n/p-heterojunctions (SHJs). NDI excitation is not followed by the complementary hole transfer to the OPE rod. Scaffolds with higher HOMOs will be needed to integrate blue NDIs into SHJ photosystems
    corecore