25 research outputs found

    Evidence for an Asialoglycoprotein Receptor on Nonparenchymal Cells for O

    No full text

    Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate <i>in Vivo</i> Deamidation of Therapeutic Antibodies

    No full text
    Deamidation of therapeutic antibodies may result in decreased drug activity and undesirable changes in pharmacokinetics and immunogenicity. Therefore, it is necessary to monitor the deamidation levels [during storage] and after <i>in vivo</i> administration. Because of the complexity of <i>in vivo</i> samples, immuno-affinity capture is widely used for specific enrichment of the target antibody prior to LCā€“MS. However, the conventional use of bead-based methods requires large sample volumes and extensive processing steps. Furthermore, with automation difficulties and extended sample preparation time, bead-based approaches may increase artificial deamidation. To overcome these challenges, we developed an automated platform to perform tip-based affinity capture of antibodies from complex matrixes with rapid digestion and peptide elution into 96-well microtiter plates followed by LCā€“MS analysis. Detailed analyses showed that the new method presents high repeatability and reproducibility with both intra and inter assay CVs < 8%. Using the automated platform, we successfully quantified the levels of deamidation of a humanized monoclonal antibody in cynomolgus monkeys over a time period of 12 weeks after administration. Moreover, we found that deamidation kinetics between <i>in vivo</i> samples and samples stressed <i>in vitro</i> at neutral pH were consistent, suggesting that the <i>in vitro</i> stress test may be used as a method to predict the liability to deamidation of therapeutic antibodies <i>in vivo</i>

    Nonclinical Pharmacokinetics and Pharmacodynamics Characterization of Anti-CD79b/CD3 T Cell-Dependent Bispecific Antibody Using a Surrogate Molecule: A Potential Therapeutic Agent for B Cell Malignancies

    No full text
    The T cell-dependent bispecific (TDB) antibody, anti-CD79b/CD3, targets CD79b and CD3 cell-surface receptors expressed on B cells and T cells, respectively. Since the anti-CD79b arm of this TDB binds only to human CD79b, a surrogate TDB that binds to cynomolgus monkey CD79b (cyCD79b) was used for preclinical characterization. To evaluate the impact of CD3 binding affinity on the TDB pharmacokinetics (PK), we utilized non-tumor-targeting bispecific anti-gD/CD3 antibodies composed of a low/high CD3 affinity arm along with a monospecific anti-gD arm as controls in monkeys and mice. An integrated PKPD model was developed to characterize PK and pharmacodynamics (PD). This study revealed the impact of CD3 binding affinity on anti-cyCD79b/CD3 PK. The surrogate anti-cyCD79b/CD3 TDB was highly effective in killing CD79b-expressing B cells and exhibited nonlinear PK in monkeys, consistent with target-mediated clearance. A dose-dependent decrease in B cell counts in peripheral blood was observed, as expected. Modeling indicated that anti-cyCD79b/CD3 TDB&rsquo;s rapid and target-mediated clearance may be attributed to faster internalization of CD79b, in addition to enhanced CD3 binding. The model yielded unbiased and precise curve fits. These findings highlight the complex interaction between TDBs and their targets and may be applicable to the development of other biotherapeutics
    corecore