20 research outputs found
One-dimensional Silicon and Germanium Nanostructures With No Carbon Analogues
In this work we report new silicon and germanium tubular nanostructures with
no corresponding stable carbon analogues. The electronic and mechanical
properties of these new tubes were investigated through ab initio methods. Our
results show that the structures have lower energy than their corresponding
nanoribbon structures and are stable up to high temperatures (500 and 1000 K,
for silicon and germanium tubes, respectively). Both tubes are semiconducting
with small indirect band gaps, which can be significantly altered by both
compressive and tensile strains. Large bandgap variations of almost 50% were
observed for strain rates as small as 3%, suggesting possible applications in
sensor devices. They also present high Young's modulus values (0.25 and 0.15
TPa, respectively). TEM images were simulated to help the identification of
these new structures
Inorganic Graphenylene: A Porous Two-Dimensional Material With Tunable Band Gap
By means of ab initio calculations we investigate the possibility of
existence of a boron nitride (BN) porous two-dimensional nanosheet which is
geometrically similar to the carbon allotrope known as biphenylene carbon. The
proposed structure, which we called Inorganic Graphenylene (IGP), is formed
spontaneously after selective dehydrogenation of the porous Boron Nitride (BN)
structure proposed by Ding et al. We study the structural and electronic
properties of both porous BN and IGP and it is shown that, by selective
substitution of B and N atoms with carbon atoms in these structures, the band
gap can be significantly reduced, changing their behavior from insulators to
semiconductors, thus opening the possibility of band gap engineering for this
class of two-dimensional materials
Structure and Dynamics of Boron Nitride Nanoscrolls
Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers
into a papyruslike shape. CNNs have been experimentally produced by different
groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron
nitride instead of graphene layers. In this work we report molecular mechanics
and molecular dynamics results for the structural and dynamical aspects of BNNS
formation. Similarly to CNS, BNNS formation is dominated by two major energy
contributions, the increase in the elastic energy and the energetic gain due to
van der Waals interactions of the overlapping surface of the rolled layers. The
armchair scrolls are the most stable configuration while zigzag scrolls are
metastable structures which can be thermally converted to armchair. Chiral
scrolls are unstable and tend to evolve to zigzag or armchair configurations
depending on their initial geometries. The possible experimental routes to
produce BNNSs are also addressed
Self-assembly Of Nitpp On Cu(111): A Transition From Disordered 1d Wires To 2d Chiral Domains.
The growth and self-assembling properties of nickel-tetraphenyl porphyrins (NiTPP) on the Cu(111) surface are analysed via scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). For low coverage, STM results show that NiTPP molecules diffuse on the terrace until they reach the step edge of the copper surface forming a 1D system with disordered orientation along the step edges. The nucleation process into a 2D superstructure was observed to occur via the interaction of molecules attached to the already nucleated 1D structure, reorienting molecules. For monolayer range coverage a 2D nearly squared self-assembled array with the emergence of chiral domains was observed. The XPS results of the Ni 2p(3/2) core levels exhibit a 2.6 eV chemical shift between the mono- and multilayer configuration of NiTPP. DFT calculations show that the observed chemical shifts of Ni 2p(3/2) occur due to the interaction of 3d orbitals of Ni with the Cu(111) substrate.1718344-1835
The AFLOW Fleet for Materials Discovery
The traditional paradigm for materials discovery has been recently expanded
to incorporate substantial data driven research. With the intent to accelerate
the development and the deployment of new technologies, the AFLOW Fleet for
computational materials design automates high-throughput first principles
calculations, and provides tools for data verification and dissemination for a
broad community of users. AFLOW incorporates different computational modules to
robustly determine thermodynamic stability, electronic band structures,
vibrational dispersions, thermo-mechanical properties and more. The AFLOW data
repository is publicly accessible online at aflow.org, with more than 1.7
million materials entries and a panoply of queryable computed properties. Tools
to programmatically search and process the data, as well as to perform online
machine learning predictions, are also available.Comment: 14 pages, 8 figure
Atomistic simulations of nanoscrolls and other nanostructures
Orientador: Douglas Soares GalvĂŁoTese (doutorado) - Universidade Estadual de Campinas, Instituto de FĂsica Gleb WataghinResumo: Neste trabalho nĂłs investigamos propriedades estruturais, dinâmicas, mecânicas e eletrĂ´nicas de diferentes nanoestruturas. A tese está dividida em trĂŞs partes distintas, na primeira tratamos diversos aspectos relacionados a nanoscrolls formados a partir de diferentes materiais, na segunda investigamos estruturas bidimensionais e porosas de nitreto de boro e, na terceira, estudamos novas estruturas unidimensionais de silĂcio e de germânio. Nanoscrolls sĂŁo estruturas formadas ao se enrolar materiais lamelares em torno de um eixo bem definido e apresentam propriedades interessantes e Ăşnicas. AlĂ©m de preservarem caracterĂsticas eletrĂ´nicas e mecânicas encontradas em nanotubos, os nanoscrolls, em função de sua morfologia aberta, apresentam grande flexibilidade radial e extensa área de superfĂcie acessĂvel a solventes, o que os torna candidatos interessantes para aplicações como nanoatuadores, tanto mecânicos quanto elĂ©tricos, e como armazenadores de hidrogĂŞnio. Inicialmente, abordamos questões relacionadas Ă sĂntese de nanoscrolls de carbono e de nitreto de boro, ambos já produzidos em laboratĂłrio. Partimos, entĂŁo, para os primeiros estudos publicados acerca de nanoscrolls formados por nitreto de carbono, estudando sua estabilidade e suas propriedades dinâmicas. Por Ăşltimo, analisamos o empacotamento de nanoscrolls dentro de nanotubos, demonstrando a falha da teoria elástica contĂnua em tratar este problema devido a efeitos eletrĂ´nicos. Estruturas bidimensionais tĂŞm sido exaustivamente estudadas desde o isolamento de monocamadas de grafeno e da confirmação de suas propriedades mecânicas e eletrĂ´nicas altamente interessantes. Naturalmente, há busca por novos materiais com caracterĂsticas semelhantes e, devido Ă grande semelhança estrutural, o nitreto de boro hexagonal tem despertado grande interesse, apresentando maior estabilidade tĂ©rmica e quĂmica se comparado ao grafeno. NĂłs desenvolvemos estudos acerca de estuturas bidimensionais e porosas de nitreto de boro com diferentes morfologias. Estas estruturas, alĂ©m de preservarem propriedades desejáveis do nitreto de boro hexagonal, sĂŁo caracterizadas por sua baixa densidade e pela existĂŞncia de largos poros, que podem ser utilizados em aplicações como de filtros seletivos. NĂłs mostramos, tambĂ©m, a possibilidade de se controlar o gap eletrĂ´nico destas estruturas atravĂ©s de substituições por átomos de carbono. Em função de importantes semelhanças entre suas estruturas eletrĂ´nicas e a do carbono, silĂcio e germânio sĂŁo capazes de gerar uma larga gama de nanoestruturas de interesse, análogas Ă s existentes de carbono. Entretanto, há, tambĂ©m, notáveis diferenças, como a manifestação do efeito pseudo-Jahn Teller que se reflete em nanoestruturas com morfologias distintas. Tendo isso em mente, investigamos a possibilidade destas diferenças levarem Ă existĂŞncia de estruturas Ăşnicas de silĂcio e de germânio, sem análogos de carbono e mostramos estruturas unidimensionais que satisfazem tais condições. NĂłs estudamos sua estabilidade e suas propriedades mecânicas e eletrĂ´nicas, mostrando que seus valores de gap eletrĂ´nico podem ser controlados atravĂ©s de tensĂŁo e compressĂŁoAbstract: In this work we investigate structural, dynamical, mechanical and electronic properties of different nanostructures. The thesis is organized in three distinct parts, in the first we analyze some aspects related to nanoscrolls made from different materials, in the second we investigate two dimensional porous boron nitride structures and, in the third, we study novel one dimensional silicon and germanium nanostructures. Nanoscrolls are structures formed by rolling layered materials around a well defined axis and present interesting and unique properties. Besides preserving electronic and mechanical properties shown by nanotubes, nanoscrolls, as a consequence of their open ended morphology, present great radial flexibility and large solvent accessible surface area, making them interesting candidates for aplications as nanoactuators, both mechanical and electronic, and as hydrogen storage mediums. Firstly, we approach aspects related to carbon and boron nitride nanoscrolls synthesis processes, both already having been experimentally produced. We then focus on the first published works on nanoscrolls formed from carbon nitride, studying their stability and dynamical properties. Lastly, we analyze the confinement laws of nanoscrolls inside nanotubes, demonstrating the failure of classical continuous elasticity on solving this problem due to electronic effects. Two dimensional nanostructures have been extensively studied since the successful isolation of monolayer graphene and the confirmation of its highly interesting mechanical and electronic properties. Naturally, other materials with similar characteristics are pursued and, due to its large structural similarity, hexagonal boron nitride has been of great interest, presenting higher thermal and chemical stability when compared to graphene. We investigated two dimensional porous boron nitride structures with distinct morphologies. These structures, besides preserving hexagonal boron nitride desirable properties, are characterized by their low density and the presence of large pores, which can be utilized in applications such as selective filters. We also show the possibility of bandgap tuning through carbon atoms substitution. Due to significant similarities between their electronic structures and that of carbon, silicon and germanium are able to generate a plethora of interesting nanostructures, analogous to the existing carbon ones. Nevertheless, there are notable differences, such as the manifestation of the pseudo-Jahn Teller effect which leads to nanostructures with distinct morphologies. With this in mind, we investigate the possibility of these differences leading to the existence of unique silicon and germanium nanostructres, with no carbon analogue and we show one dimensional structures satisfying such conditions. We study their stability and their mechanical and electronic properties, showing that their bandgap values can be controlled by compressive and tensile strainDoutoradoFĂsicaDoutor em CiĂŞncia