14 research outputs found

    Recombination Ghosts in Littrow Configuration: Implications for Spectrographs Using Volume Phase Holographic Gratings

    Full text link
    We report the discovery of optical ghosts generated when using Volume Phase Holographic (VPH) gratings in spectrographs employing the Littrow configuration. The ghost is caused by light reflected off the detector surface, recollimated by the camera, recombined by, and reflected from, the grating and reimaged by the camera onto the detector. This recombination can occur in two different ways. We observe this ghost in two spectrographs being developed by the University of Wisconsin - Madison: the Robert Stobie Spectrograph for the Southern African Large Telescope and the Bench Spectrograph for the WIYN 3.5m telescope. The typical ratio of the brightness of the ghost relative to the integrated flux of the spectrum is of order 10^-4, implying a recombination efficiency of the VPH gratings of order 10^-3 or higher, consistent with the output of rigorous coupled wave analysis. Any spectrograph employing VPH gratings, including grisms, in Littrow configuration will suffer from this ghost, though the general effect is not intrinsic to VPH gratings themselves and has been observed in systems with conventional gratings in non-Littrow configurations. We explain the geometric configurations that can result in the ghost as well as a more general prescription for predicting its position and brightness on the detector. We make recommendations for mitigating the ghost effects for spectrographs and gratings currently built. We further suggest design modifications for future VPH gratings to eliminate the problem entirely, including tilted fringes and/or prismatic substrates. We discuss the resultant implications on the spectrograph performance metrics.Comment: 13 pages, 8 figures, emulateapj style, accepted for publication in PAS

    Instrumentation for high-resolution spectropolarimetry

    Get PDF
    ABSTRACT Linear spectropolarimetry of spectral lines is a neglected field in astronomy, largely because of the lack of instrumentation. Techniques that have been applied, but rarely, include investigation of the dynamics of scattering envelopes through the polarization of electron-or dust-scattered nebular light. Untried techniques include promising new magnetic diagnostics like the Hanle Effect in the far-ultraviolet and magnetic realignment in the visible. The University of Wisconsin Space Astronomy Lab is developing instrumentation for such investigations. In the visible, the Prime Focus Imaging Spectrograph (PFIS) is a first light instrument for the Southern African Large Telescope (SALT), which at an aperture of 11m will be the largest single telescope in the Southern Hemisphere. Scheduled for commissioning in late 2004, PFIS is a versatile highthroughput imaging spectrograph using volume-phase holographic gratings for spectroscopic programs from 320nm to 900nm at resolutions of R=500 to R=6000. A dual-etalon Fabry-Perot subsystem enables imaging spectroscopy at R=500 and R=3000 or 12,500. The polarization subsystem, consisting of a very large calcite polarizing beam-splitter used in conjunction with half-and quarter-wave Pancharatnam superachromatic plates, allow linear or circular polarimetric measurements in any of the spectroscopic modes. In the FUV, the Far-Ultraviolet SpectroPolarimeter (FUSP) is a sounding rocket payload, scheduled for its first flight in 2003, that will obtain the first high-precision spectropolarimetry from 105 -150 nm, and the first astronomical polarimetry of any kind below 130 nm. The 50 cm primary mirror of the telescope is F/2.5. At the prime focus are the polarimetric optics, a stressed lithium fluoride rotating waveplate, followed by a synthetic diamond Brewsterangle mirror. The spectrometer uses an aberration-corrected spherical holographic grating and a UV-sensitized CCD detector, for a spectral resolution of R=1800

    Discovery of the first symbiotic star in NGC6822

    Full text link
    We report the discovery of the first symbiotic star (V=21.6, K_S=15.8 mag) in the Local Group dwarf irregular galaxy NGC6822. This star was identified during a spectral survey of Ha emission-line objects using the Southern African Large Telescope (SALT) during its performance-verification phase. The observed strong emission lines of HI and HeII suggest a high electron density and T* < 130 000 K for the hot companion. The infrared colours allow us to classify this object as an S-type symbiotic star, comprising a red giant losing mass to a compact companion. The red giant is an AGB carbon star, and a semi-regular variable, pulsating in the first overtone with a period of 142 days. Its bolometric magnitude is M_bol=-4.4 mag. We review what is known about the luminosities of extragalactic symbiotic stars, showing that most, possibly all, contain AGB stars. We suggest that a much larger fraction of Galactic symbiotic stars may contain AGB stars than was previously realised.Comment: 6 pages, 4 figures, accepted to MNRA

    Ultraviolet Imaging of the z=0.23 Cluster Abell 2246

    Get PDF
    We present deep ultraviolet observations of a field containing the cluster Abell 2246 (z=0.225) which provide far-ultraviolet (FUV) images of some of the faintest galaxies yet observed in that bandpass. Abell 2246 lies within the field of view of Ultraviolet Imaging Telescope (UIT) observations of the quasar HS1700+64, which accumulated over 7100 seconds of UIT FUV exposure time during the Astro-2 mission in March 1995. For objects found on both the FUV and ground-based V-band images, we obtain FUV (l ~ 1520 A) photometry and V-band photometry, as well as mid-UV (l ~ 2490 A) photometry from UIT Astro-1 observations and ground-based I-band photometry. We find five objects in the images which are probably galaxies at the distance of Abell 2246, with FUV magnitudes (m(FUV)) between 18.6 and 19.6, and V magnitudes between 18.4 and 19.6. We find that their absolute FUV fluxes and colors imply strongly that they are luminous galaxies with significant current star formation, as well as some relatively recent, but not current, (> 400 Myr ago) star formation. We interpret the colors of these five objects by comparing them with local objects, redshift-corrected template spectra and stellar population models, finding that they are plausibly matched by 10-Gyr-old population models with decaying star formation, with decay time constants in the range 3 Gyr < t < 5 Gyr, with an additional color component from a single burst of moderate ( ~ 400-500 Myr) age. From derived FUV luminosities we compute current star formation rates. We compare the UV properties of Abell 2246 with those of the Coma cluster, finding that Abell 2246 has significantly more recent star formation, consistent with the Butcher-Oemler phenomenon.Comment: Accepted for publication in the Astronomical Journal, June 1998. 17 Pages AAS latex, includes 4 bitmap .jpg format images and 4 other figures. PDF, Embedded Gzipped PS version (1.9Mb) TeX source and figures available at http://www.astro.virginia.edu/~bd4r/galaxies.htm

    Brief Exposure to Secondhand Smoke Reversibly Impairs Endothelial Vasodilatory Function

    No full text
    Introduction: We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time. Methods: We measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30min, 10min, 1min, and 4 breaths (roughly 15 s). Results: We observed a dose-response relationship between SHS particle concentration over 30min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD. Conclusions: Brief SHS exposure at real-world levels reversibly impairs FMD. Even 1min of SHS exposure can cause reduction of endothelial function.</p

    Brief exposure to secondhand smoke reversibly impairs endothelial vasodilatory function.

    No full text
    IntroductionWe sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30 min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time.MethodsWe measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30 min, 10 min, 1 min, and 4 breaths (roughly 15 s).ResultsWe observed a dose-response relationship between SHS particle concentration over 30 min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD.ConclusionsBrief SHS exposure at real-world levels reversibly impairs FMD. Even 1 min of SHS exposure can cause reduction of endothelial function

    Brief Exposure to Secondhand Smoke Reversibly Impairs Endothelial Vasodilatory Function

    No full text
    Introduction: We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time. Methods: We measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30min, 10min, 1min, and 4 breaths (roughly 15 s). Results: We observed a dose-response relationship between SHS particle concentration over 30min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD. Conclusions: Brief SHS exposure at real-world levels reversibly impairs FMD. Even 1min of SHS exposure can cause reduction of endothelial function.</p
    corecore