6,550 research outputs found

    A basis of settlement: Economic foundations of permanent pioneer communities

    Get PDF
    High transport costs will dominate the course of lunar development. During the earliest phases, when lunar facilities consist of a research and resource development complex with staff serving tours of a few months, transport costs will encourage local production of fuel, food, and building materials. Once these capabilities are in place and the number of personnel grows to a few hundred, staff rotation might well dominate transport budgets. At that point it would make economic sense to encourage some members of staff to become permanent residents. By analogy with early British settlement in Australia, a vigorous private sector economy could emerge if the lunar organization provided quasi-export earnings through its role as the community's major employer and as the major buyer of locally produced goods. By providing such a market for goods and services, the lunar organization would not only provide a means whereby permanent residents could support themselves, but could also accelerate the process of replacing imported goods with local manufacturers, thereby reducing the cost of operations. By analogy with recent Alaskan experience, if the resource development activity started making money from sales to orbital customers, export taxes and/or royalty payments could also provide means by which a lunar community could support itself

    Reconnecting Magnetic Flux Tubes as a Source of In Situ Acceleration in Extragalactic Radio Sources

    Full text link
    Many extended extragalactic radio sources require a local {\it in situ\/} acceleration mechanism for electrons, in part because the synchrotron lifetimes are shorter than the bulk travel time across the emitting regions. If the magnetic field in these sources is localized in flux tubes, reconnection may occur between regions of plasma \be (ratio of particle to magnetic pressure) <<1<<1, even though β\beta averaged over the plasma volume may be \gsim 1. Reconnection in low β\beta regions is most favorable to acceleration from reconnection shocks. The reconnection X-point regions may provide the injection electrons for their subsequent non-thermal shock acceleration to distributions reasonably consistent with observed spectra. Flux tube reconnection might therefore be able to provide in situin\ situ acceleration required by large scale jets and lobes.Comment: 14 pages, plain TeX, accepted to Ap.J.Let

    Comparative Predation on Naturally Occurring Gypsy Moth (Lepidoptera: Lymantriidae) Pupae and Deployed Freeze-Dried Pupae

    Get PDF
    Predation is an important factor in the dynamics of gypsy moth (Lymantria dispar L.) populations, yet predation rates can be difficult to estimate accurately in the field. Biased estimates can result from spatial heterogeneity in risk or from artifacts associated with deploying prey. Here we compare predation rates on freeze-dried gypsy moth pupae affixed with beeswax to pieces of burlap with predation rates on naturally occurring live pupae in the same sites. Daily predation rates, primarily by small mammals, were two to eight times greater for freeze-dried deployed pupae than natural pupae, depending on the year. These results indicate apparent predation rates can be substantially biased by artifacts associated with deployed prey, such as human scent, artificial substrates, or freeze drying. Results from studies using similar methods may provide qualitative comparisons of relative predation risk, but their estimates of absolute predation rates should be interpreted with caution, and attempts should be made to quantify and correct for any resulting bias

    Flight Test Methodology for NASA Advanced Inlet Liner on 737MAX-7 Test Bed (Quiet Technology Demonstrator 3)

    Get PDF
    This paper describes the acoustic flight test results of an advanced nacelle inlet acoustic liner concept designed by NASA Langley, in a campaign called Quiet Technology Demonstrator 3 (QTD3). NASA has been developing multiple acoustic liner concepts to benefit acoustics with multiple-degrees of freedom (MDOF) honeycomb cavities, and lower the excrescence drag. Acoustic and drag performance were assessed at a lab-scale, flow duct level in 2016. Limitations of the lab-scale rig left open-ended questions regarding the in-flight acoustic performance. This led to a joint project to acquire acoustic flyover data with this new liner technology built into full scale inlet hardware containing the NASA MDOF Low Drag Liner. Boeing saw an opportunity to collect the acoustic flyover data on the 737 MAX-7 between certification tests at no impact to the overall program schedule, and successfully executed within the allotted time. The flight test methodology and the test configurations are detailed and the acoustic analysis is summarized in this paper. After the tone and broadband deltas associated with the inlet hardware were separated and evaluated, the result was a significant decrease in cumulative EPNL (Effective Perceived Noise Level)

    Multisensory Integration Sites Identified by Perception of Spatial Wavelet Filtered Visual Speech Gesture Information

    Get PDF
    Perception of speech is improved when presentation of the audio signal is accompanied by concordant visual speech gesture information. This enhancement is most prevalent when the audio signal is degraded. One potential means by which the brain affords perceptual enhancement is thought to be through the integration of concordant information from multiple sensory channels in a common site of convergence, multisensory integration (MSI) sites. Some studies have identified potential sites in the superior temporal gyrus/sulcus (STG/S) that are responsive to multisensory information from the auditory speech signal and visual speech movement. One limitation of these studies is that they do not control for activity resulting from attentional modulation cued by such things as visual information signaling the onsets and offsets of the acoustic speech signal, as well as activity resulting from MSI of properties of the auditory speech signal with aspects of gross visual motion that are not specific to place of articulation information. This fMRI experiment uses spatial wavelet bandpass filtered Japanese sentences presented with background multispeaker audio noise to discern brain activity reflecting MSI induced by auditory and visual correspondence of place of articulation information that controls for activity resulting from the above-mentioned factors. The experiment consists of a low-frequency (LF) filtered condition containing gross visual motion of the lips, jaw, and head without specific place of articulation information, a midfrequency (MF) filtered condition containing place of articulation information, and an unfiltered (UF) condition. Sites of MSI selectively induced by auditory and visual correspondence of place of articulation information were determined by the presence of activity for both the MF and UF conditions relative to the LF condition. Based on these criteria, sites of MSI were found predominantly in the left middle temporal gyrus (MTG), and the left STG/S (including the auditory cortex). By controlling for additional factors that could also induce greater activity resulting from visual motion information, this study identifies potential MSI sites that we believe are involved with improved speech perception intelligibility

    Acoustic Phased Array Quantification of Quiet Technology Demonstrator 3 Advanced Inlet Liner Noise Component

    Get PDF
    Acoustic phased array flyover noise measurements were acquired as part of the Boeing 737 MAX-7 NASA Advanced Inlet Liner segment of the Quiet Technology Demonstrator 3 (QTD3) flight test program. This paper reports on the processes used for separating and quantifying the engine inlet, exhaust and airframe noise source components and provides sample phased array-based comparisons of the component noise source levels associated with the inlet liner treatment configurations. Full scale flyover noise testing of NASA advanced inlet liners was conducted as part of the Quiet Technology Demonstrator 3 flight test program in July and August of 2018. Details on the inlet designs and testing are provided in the companion paper of Reference 1. The present paper provides supplemental details relating to the acoustic phased array portion of the analyses provided in Ref. 1. In brief, the test article was a Boeing 737MAX-7 aircraft with a modified right hand (starboard side) engine inlet, which consisted of either a production inlet liner, a NASA designed inlet liner or a simulated hard wall configuration (accomplished by applying speed tape over the inlet acoustic treatment areas). In all three configurations, the engine forward fan case acoustic panel was replaced with a unperforated (hardwall) panel. No other modifications to any other acoustic treatment areas were made. The left hand (port side) engine was a production engine and was flown at idle thrust for all measurements in order to isolate the effects of the inlet liners to the right hand engine. As described in Ref. 1, the NASA inlet treatment consists of laterally cut slots (cut perpendicular to the flow direction) which are designed to reduce excrescence drag while maintaining or exceeding the liner acoustic noise reduction capabilities. The NASA inlet liner consists of a Multi-Degree of Freedom (MDOF) design with two breathable septum layers inserted into each honeycomb cell [1]. The aircraft noise measurements were acquired for both takeoff (flaps 1 setting, gear up) and approach (flaps 30 gear up and gear down) configurations. The inlet and flight test configurations are summarized in Table 1. Table 1: Inlet Treatment and Flight Configurations Inlet Forward Fan Case Aircraft Production Hardwall Flaps 1, gear up; flaps 30 gear up; flaps 30 gear down NASA Hardwall Flaps 1, gear up; flaps 30 gear up; flaps 30 gear down Hardwall Hardwall Flaps 1, gear up; flaps 30 gear up; flaps 30 gear down III.Test Description and Hardware The flight testing was conducted at the Grant County airport in Moses Lake, WA, between 27 July and 6 August 2018. The noise measurement instrumentation included 8 flush dish microphones arranged in a noise certification configuration as well as an 840 microphone phased array. The flush dish microphones were used to quantify the levels and differences in levels between the various inlet treatments. The phased array was used to separate and quantify the narrowband (tonal) and broadband noise component levels from the engine inlet/exhaust and from the airframe. Phased array extraction of the broadband component was critical to this study because it allowed for the separation of the inlet component from the total airplane level noise even when it was significantly below the total level. Figure 1 provides an overview of the phased array microphone layout as well as a detailed image of an individual phased array microphone mounted in a plate holder (the microphone sensor is the dot in the center of the plate). The ground plane ensemble array microphones (referred to as ensemble array in this paper) were mounted in plates with flower petal edges designed to minimize edge scattering effects. Fig. 1 Flyover test microphone layout. The phased array configuration was the result of a progressive development of concepts originally implemented in Ref. 2 and refined over the following years, consisting namely of multiple multi-arm logarithmic spiral subarrays designed to cover overlapping frequency ranges and optimized for various aircraft emission angles. For the present case, the signals from all 840 microphones were acquired on a single system. The 840 microphones were parsed into 11 primary subarray sets spanning from smallest to largest aperture size and labeled accordingly as a, b, , k, where a corresponds to the smallest fielded subarray and k corresponds to the largest aperture subarray. The apertures ranged from approximately 10 ft to 427 ft in size (in the flight direction) with the subarrays consisting of between 215 and 312 microphones. Figure 2 shows three such subarrays, k, h and a. As done in Ref. 2, microphones were shared between subarrays in order to reduce total channel count. Fig. 2 Sample subarray sizes (20 from overhead refer to Figure 3a discussion). In addition to the above, each of the 11 primary subarray sets consisted of four subarrays optimized to provide near equivalent array spatial resolution in both the flight and lateral directions within 30 degrees of overhead (i.e., airplane directly above the center of the array), namely, at angles of 0, 10, 20 and 30 degrees relative to overhead where angle is defined as shown in Figure 3a. This allowed for optimized aircraft noise measurements from 60 to 120 degree emission angle.6 An example of this pletharray design is shown in Figure 3b for the k subarray. When the aircraft is at overhead, the microphones indicated by the blue markers are used for beamforming. When the aircraft is at angles 10 degrees from overhead, both the blue and red colored microphones are used, and so on for the 20 and 30 degree aircraft locations. See Ref. 3 for extensive details on pletharray design for aeroacoustic phased array testing. 6 In the discussions that follow, emission angle values are used. These are the angles at the time sound is emitted relative to the engine axis and are calculated based on flight path angle, body aircraft body angle with respect to the relative wind direction, and engine axis angle relative to aircraft body angle

    Approaches to enhance driver situational assessment aids

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 97-100).Collision warning systems encounter a fundamental trade-off between providing the driver more time in which to respond and alerting the driver unnecessarily. The probability that a driver successfully avoids a hazard increases as the driver is provided more time and distance in which to identify the hazard and execute the most effective response. However, alerting the driver at earlier, more conservative thresholds increases the probability that the alerts are unnecessary, either because sensor error has falsely identified a hazard or because the environment has changed such that a hazard is no longer a threat. Frequent unnecessary alerts degrade alert effectiveness by reducing trust in the system. The human-factors issues pertaining to a forward collision warning system (FCWS) were analyzed using an Integrated Human-Centered Systems approach, from which two design features were proposed: multi-stage alerting, which alerts the driver at a conservative early threshold, in addition to a more serious late threshold; and directional alerting, which provides the driver information regarding the location of the hazard that prompted the alert activation. Alerting the driver earlier increases the probability of a successful response by conditioning the driver to respond more effectively if and when evasive action is necessary. Directional alerting decreases the amount of time required to identify the hazard, while promoting trust in the system by informing the driver of the cause of the alert activation. The proposed design features were incorporated into three FCWS configurations, and an experiment was conducted in which drivers were equipped with the systems and placed in situations in which a collision would occur if they did not respond.(cont.) Drivers who were equipped with multi-stage and directional alerting were more effective at avoiding hazardous situations than drivers who were not provided early alerting. Drivers with early alerting tended to respond earlier and more consistently, which promoted more successful responses. Subjective feedback indicates that drivers experienced high levels of acceptance, confidence, and trust in multi-stage and directional alerting.by Eric M. Jones.S.M
    corecore