3,024 research outputs found

    Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification

    Get PDF
    Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel's cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification

    Electrical power dissipation in carbon nanotubes on single crystal quartz and amorphous SiO2

    Full text link
    Heat dissipation in electrically biased semiconducting carbon nanotubes (CNTs) on single crystal quartz and amorphous SiO2 is examined with temperature profiles obtained by spatially resolved Raman spectroscopy. Despite the differences in phonon velocities, thermal conductivity and van der Waals interactions with CNTs, on average, heat dissipation into single crystal quartz and amorphous SiO2 is found to be similar. Large temperature gradients and local hot spots often observed underscore the complexity of CNT temperature profiles and may be accountable for the similarities observed

    FRAME: an Aging Community for All Ages

    Get PDF
    The project's name is FRAME. The idea is to frame the important activities, frame your loved ones, and frame the special moments of life. The project is an aging community for all ages located in Taichung, Taiwan. When I was doing my internship in Taiwan in the summer of 2019, I came across a project that is building on this site. Its idea is to build a village surrounded by mountains to bring people closer to nature for better health. I saw this as a good opportunity to have an aging community built at this nature site. This way, the nature property of the site and the green surrounding can benefit the health of the seniors

    Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches.

    Get PDF
    Previous genetic and biochemical studies from Saccharomyces cerevisiae have identified a critical ribosome-associated quality control complex (RQC) that facilitates resolution of stalled ribosomal complexes. While components of the mammalian RQC have been examined in vitro, a systematic characterization of RQC protein interactions in mammalian cells has yet to be described. Here we utilize both proximity-labeling proteomic approaches, BioID and APEX, and traditional affinity-based strategies to both identify interacting proteins of mammalian RQC members and putative substrates for the RQC resident E3 ligase, Ltn1. Surprisingly, validation studies revealed that a subset of substrates are ubiquitylated by Ltn1 in a regulatory manner that does not result in subsequent substrate degradation. We demonstrate that Ltn1 catalyzes the regulatory ubiquitylation of ribosomal protein S6 kinase 1 and 2 (RPS6KA1, RPS6KA3). Further, loss of Ltn1 function results in hyperactivation of RSK1/2 signaling without impacting RSK1/2 protein turnover. These results suggest that Ltn1-mediated RSK1/2 ubiquitylation is inhibitory and establishes a new role for Ltn1 in regulating mitogen-activated kinase signaling via regulatory RSK1/2 ubiquitylation. Taken together, our results suggest that mammalian RQC interactions are difficult to observe and may be more transient than the homologous complex in S. cerevisiae and that Ltn1 has RQC-independent functions

    Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes

    Full text link
    Semiconducting carbon nanotubes under high electric field stress (~10 V/um) display a striking, exponential current increase due to avalanche generation of free electrons and holes. Unlike in other materials, the avalanche process in such 1D quantum wires involves access to the third sub-band, is insensitive to temperature, but strongly dependent on diameter ~exp(-1/d^2). Comparison with a theoretical model yields a novel approach to obtain the inelastic optical phonon emission length, L_OP,ems ~ 15d nm. The combined results underscore the importance of multi-band transport in 1D molecular wires
    corecore