5 research outputs found

    Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference

    Full text link
    A phase-slip in the fringes of an interference pattern is an unmistakable characteristic of vorticity. We show dramatic two-dimensional simulations of interference between expanding condensate clouds with and without vorticity. In this way, vortices may be detected even when the core itself cannot be resolved.Comment: 3 pages, RevTeX, plus 6 PostScript figure

    Generalized Pseudopotentials for Higher Partial Wave Scattering

    Full text link
    We derive a generalized zero-range pseudopotential applicable to all partial wave solutions to the Schroedinger equation based on a delta-shell potential in the limit that the shell radius approaches zero. This properly models all higher order multipole moments not accounted for with a monopolar delta function at the origin, as used in the familiar Fermi pseudopotential for s-wave scattering. By making the strength of the potential energy dependent, we derive self-consistent solutions for the entire energy spectrum of the realistic potential. We apply this to study two particles in an isotropic harmonic trap, interacting through a central potential, and derive analytic expressions for the energy eigenstates and eigenvalues.Comment: RevTeX 4 pages, 1 figure, final published versio

    Creation of vortices in a Bose-Einstein condensate by a Raman technique

    Full text link
    We propose a method for taking a Bose-Einstein condensate in the ground trap state simultaneously to a different atomic hyperfine state and to a vortex trap state. This can be accomplished through a Raman scheme in which one of the two copropagating laser beams has a higher-order Laguerre-Gaussian mode profile. Coefficients relating the beam waist, pulse area, and trap potentials for a complete transfer to the m = 1 vortex are calculated for a condensate in the non-interacting and strongly interacting regimes.Comment: RevTex, 4 pages, 2 PostScript figure

    Reconstruction of the joint state of a two-mode Bose-Einstein condensate

    Get PDF
    We propose a scheme to reconstruct the state of a two-mode Bose-Einstein condensate, with a given total number of atoms, using an atom interferometer that requires beam splitter, phase shift and non-ideal atom counting operations. The density matrix in the number-state basis can be computed directly from the probabilities of different counts for various phase shifts between the original modes, unless the beamsplitter is exactly balanced. Simulated noisy data from a two-mode coherent state is produced and the state is reconstructed, for 49 atoms. The error can be estimated from the singular values of the transformation matrix between state and probability data.Comment: 4 pages (REVTeX), 5 figures (PostScript
    corecore