22 research outputs found

    The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both <it>in vivo </it>and <it>in vitro</it>. We found in an <it>in-silico </it>search tight co-regulation between <it>matriptase </it>and <it>claudin-7 </it>expression. We have previously shown that the <it>matriptase </it>expression level decreases during colorectal carcinogenesis. In the present study we investigated whether <it>claudin-7 </it>expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue.</p> <p>Methods</p> <p>The mRNA level of <it>claudin-7 </it>(CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings.</p> <p>Results</p> <p>A 2.7-fold reduction in the <it>claudin-7 </it>mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the <it>claudin-7 </it>mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings.</p> <p>Conclusions</p> <p>Our results show that the <it>claudin-7 </it>mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.</p

    Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization

    No full text
    In intact mucosal tissues, epithelial cells are anatomically positioned in proximity to a number of subepithelial cell types, including endothelia. A number of recent studies have suggested that imbalances between energy supply and demand can result in “inflammatory hypoxia.” Given these associations, we hypothesized that endothelial-derived, hypoxia-inducible mediators might influence epithelial function. Guided by cDNA microarray analysis of human microvascular endothelial cells (HMEC-1 line) subjected to hypoxia (pO2 20 torr, 8 h), we identified adrenomedullin (ADM) as a prominent hypoxia-inducible factor (HIF) that acts on epithelial cells through cell surface receptors. We assessed the functional ability for exogenous ADM to signal in human intestinal Caco2 cells in vitro by demonstrating a dose-dependent induction of Erk1/2phosphorylation. Further analysis revealed that ADM deneddylates cullin-2 (Cul2), whose action has been demonstrated to control the activity of HIF. Caco2 cells stably expressing a hypoxic response element (HRE)-driven luciferase promoter confirmed that ADM activates the HIF signaling pathway. Extensions of these studies revealed an increase in canonical HIF-1-dependent genes following stimulation with ADM. To define physiological relevance, we investigated the effect of ADM in a DSS model of murine colitis. Administration of ADM resulted in reduced inflammatory indices and less severe histological inflammation compared to vehicle controls. Analysis of tissue and serum cytokines showed a marked and significant inhibition of colitis-associated TNF-α, IL-1β, and KC. Analysis of circulating ADM demonstrated an increase in serum ADM in murine models of colitis. Taken together, these results identify ADM as an endogenously generated vascular mediator that functions as a mucosal protective factor through fine tuning of HIF activity.—MacManus, C.F., Campbell, E.L., Keely, S., Burgess, A., Kominsky, D.J., Colgan, S.P. Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization
    corecore