95 research outputs found

    CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM

    Get PDF
    Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream substrates, mineral deposits can also form on benthic invertebrates. However, little is known about which taxa may be prone to calcium carbonate encrustation and which life history traits may make taxa more susceptible to becoming encrusted. Here we report the presence of calcium carbonate deposits on live insects collected from a montane stream in the Madrean Sky Islands (Huachuca Mountains) of Arizona between 2011 and 2013. Life history differences are examined between taxa with and without travertine deposits. Thirteen genera of aquatic insects were found with calcium carbonate deposits on the exoskeleton as well as 22 other genera, also encountered in the study stream, that have not previously been found with such deposits. Taxa with calcium carbonate encrustation had significantly longer-lived aquatic stages than those without encrustation. Furthermore, encrustation presence did not differ among aerial dispersal modes. These results suggest that the extent of calcium carbonate deposition on aquatic insects is primarily related to the length of time they are in the stream. Since mineral encrustation may reduce predation pressure and mobility, changes in patterns of travertine formation in these systems may have profound effects on ecological interactions. Los ecosistemas dulceacuícolas ubicados en regiones de roca caliza pueden contener depósitos de carbonato de calcio en forma de travertino o tufa. Aunque muchos depósitos de travertino se encuentran como una capa o manto de cemento sobre el fondo del arroyo, los depósitos también pueden formarse sobre los invertebrados bentónicos. Sin embargo, poco se sabe acerca de las especies que son propensas a los depósitos de travertino, o acerca de las características de estas especies que influyen en tal proceso. En este manuscrito reportamos la presencia de depósitos de travertino en insectos vivos y recolectados en un arroyo montañoso en el Archipiélago Madrense de Arizona durante 2011–2013 y examinamos las diferencias en las historias de vida entre taxones con o sin depósitos de travertino. Encontramos trece géneros de insectos acuáticos con travertino sobre el exoesqueleto y vientedos géneros sin travertino. Los taxones con travertino tienen una fase acuática significativamente más larga que los taxones sin travertino. Además, la presencia de travertino no difirió entre especies con distintas maneras de dispersión aérea. Estos resultados sugieren que las diferencias en los depósitos de travertino en insectos acuáticos ocurren principalmente a causa de la duración del período de vida acuática del insecto. Aunque los depósitos de travertino pueden reducir la presión por depredación y movilidad, cambios en los patrones de formación de travertino en estos sistemas pueden afectar profundamente las interacciones ecológicas

    QES-Fire: A dynamically coupled fast-response wildfire model

    Get PDF
    A microscale wildfire model, QES-Fire, that dynamically couples the fire front to microscale winds was developed using a simplified physics rate of spread (ROS) model, a kinematic plume-rise model and a mass-consistent wind solver. The model is three-dimensional and couples fire heat fluxes to the wind field while being more computationally efficient than other coupled models. The plume-rise model calculates a potential velocity field scaled by the ROS model\u27s fire heat flux. Distinct plumes are merged using a multiscale plume-merging methodology that can efficiently represent complex fire fronts. The plume velocity is then superimposed on the ambient winds and the wind solver enforces conservation of mass on the combined field, which is then fed into the ROS model and iterated on until convergence. QES-Fire\u27s ability to represent plume rise is evaluated by comparing its results with those from an atmospheric large-eddy simulation (LES) model. Additionally, the model is compared with data from the FireFlux II field experiment. QES-Fire agrees well with both the LES and field experiment data, with domain-integrated buoyancy fluxes differing by less than 17% between LES and QES-Fire and less than a 10% difference in the ROS between QES-Fire and FireFlux II data

    Trophic Trait Evolution Explains Variation in Nutrient Excretion Stoichiometry among Panamanian Armored Catfishes (Loricariidae)

    Get PDF
    Variation in nutrient excretion rates and stoichiometric ratios (e.g., nitrogen to phosphorus) by consumers can have substantial effects on aquatic ecosystem function. While phylogenetic signals within an assemblage often explain variation in nutrient recycling rates and stoichiometry, the phylogenetically conserved traits that underlie this phenomenon remain unclear. In particular, variation in nutrient excretion stoichiometry across a phylogeny might be driven by phylogenetic patterns in either diet or body stoichiometry. We examined the relative importance of these traits in explaining variation in nutrient recycling rates and stoichiometry in a diverse family of Neotropical-armored catfishes, Loricariidae, in Panamanian streams. We found significant variation in nutrient mineralization traits among species and subfamilies, but variation in nutrient excretion stoichiometry among species was best explained by trophic position rather than body stoichiometry. The variation in trophic position among Panamanian species was consistent with variation in the trophic niche of their genera across South America, suggesting that phylogenetic patterns underpin the evolution of trophic and nutrient excretion traits among these species. Such geographical variation in nutrient mineralization patterns among closely related species may be common, given that trophic variation in fish lineages occurs widely. These results suggest that information on trophic trait evolution within lineages will advance our understanding of the functional contribution of animals to biogeochemical cycling

    Large-Scale Variation in Wave Attenuation of Oyster Reef Living Shorelines and the Influence of Inundation Duration

    Get PDF
    One of the paramount goals of oyster reef living shorelines is to achieve sustained and adaptive coastal protection, which requires meeting ecological (i.e., develop a self-sustaining oyster population) and engineering (i.e., provide coastal defense) targets. In a large-scale comparison along the Atlantic and Gulf coasts of the United States, the efficacy of various designs of oyster reef living shorelines at providing wave attenuation was evaluated accounting for the ecological limitations of oysters with regards to inundation duration. A critical threshold for intertidal oyster reef establishment is 50% inundation duration. Living shorelines that spent less than half of the time (\u3c 50%) inundated were not considered suitable habitat for oysters, however, were effective at wave attenuation (68% reduction in wave height). Reefs that experienced \u3e 50% inundation were considered suitable habitat for oysters, but wave attenuation was similar to controls (no reef; ~5% reduction in wave height). Many of the oyster reef living shoreline approaches therefore failed to optimize the ecological and engineering goals. In both inundation regimes, wave transmission decreased with an increasing freeboard (difference between reef crest elevation and water level), supporting its importance in the wave attenuation capacity of oyster reef living shorelines. However, given that the reef crest elevation (and thus freeboard) should be determined by the inundation duration requirements of oysters, research needs to be re-focused on understanding the implications of other reef parameters (e.g. width) for optimising wave attenuation. A broader understanding of the reef characteristics and seascape contexts that result in effective coastal defense by oyster reefs is needed to inform appropriate design and implementation of oyster-based living shorelines globally

    The SRG Rat, a Sprague-Dawley Rag2/Il2rg Double-Knockout Validated for Human Tumor Oncology Studies

    Get PDF
    We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks

    Cost-effectiveness analysis of rapid diagnostic test, microscopy and syndromic approach in the diagnosis of malaria in Nigeria: implications for scaling-up deployment of ACT

    Get PDF
    BACKGROUND: The diagnosis and treatment of malaria is often based on syndromic presentation (presumptive treatment) and microscopic examination of blood films. Treatment based on syndromic approach has been found to be costly, and contributes to the development of drug resistance, while microscopic diagnosis of malaria is time-consuming and labour-intensive. Also, there is lack of trained microscopists and reliable equipment especially in rural areas of Nigeria. However, although rapid diagnostic tests (RDTs) have improved the ease of appropriate diagnosis of malaria diagnosis, the cost-effectiveness of RDTs in case management of malaria has not been evaluated in Nigeria. The study hence compares the cost-effectiveness of RDT versus syndromic diagnosis and microscopy. METHODS: A total of 638 patients with fever, clinically diagnosed as malaria (presumptive malaria) by health workers, were selected for examination with both RDT and microscopy. Patients positive on RDT received artemisinin-based combination therapy (ACT) and febrile patients negative on RDT received an antibiotic treatment. Using a decision tree model for a hypothetical cohort of 100,000 patients, the diagnostic alternatives considered were presumptive treatment (base strategy), RDT and microscopy. Costs were based on a consumer and provider perspective while the outcome measure was deaths averted. Information on costs and malaria epidemiology were locally generated, and along with available data on effectiveness of diagnostic tests, adherence level to drugs for treatment, and drug efficacy levels, cost-effectiveness estimates were computed using TreeAge programme. Results were reported based on costs and effects per strategy, and incremental cost-effectiveness ratios. RESULTS: The cost-effectiveness analysis at 43.1% prevalence level showed an incremental cost effectiveness ratio (ICER) of 221 per deaths averted between RDT and presumptive treatment, while microscopy is dominated at that level. There was also a lesser cost of RDT (0.34million)comparedtopresumptivetreatment(0.34 million) compared to presumptive treatment (0.37 million) and microscopy ($0.39 million), with effectiveness values of 99,862, 99,735 and 99,851 for RDT, presumptive treatment and microscopy, respectively. Cost-effectiveness was affected by malaria prevalence level, ACT adherence level, cost of ACT, proportion of non-malaria febrile illness cases that were bacterial, and microscopy and RDT sensitivity. CONCLUSION: RDT is cost-effective when compared to other diagnostic strategies for malaria treatment at malaria prevalence of 43.1% and, therefore, a very good strategy for diagnosis of malaria in Nigeria. There is opportunity for cost savings if rapid diagnostic tests are introduced in health facilities in Nigeria for case management of malaria

    Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector

    Get PDF
    Improvements in temporal resolution of single-photon detectors enable increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging, and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the most efficient time-resolving single-photon-counting detectors available in the near-infrared, but understanding of the fundamental limits of timing resolution in these devices has been limited due to a lack of investigations into the timescales involved in the detection process. We introduce an experimental technique to probe the detection latency in SNSPDs and show that the key to achieving low timing jitter is the use of materials with low latency. By using a specialized niobium nitride SNSPD we demonstrate that the system temporal resolution can be as good as 2.6 ± 0.2 ps for visible wavelengths and 4.3 ± 0.2 ps at 1,550 nm

    Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector

    Get PDF
    Improvements in temporal resolution of single-photon detectors enable increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging, and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the most efficient time-resolving single-photon-counting detectors available in the near-infrared, but understanding of the fundamental limits of timing resolution in these devices has been limited due to a lack of investigations into the timescales involved in the detection process. We introduce an experimental technique to probe the detection latency in SNSPDs and show that the key to achieving low timing jitter is the use of materials with low latency. By using a specialized niobium nitride SNSPD we demonstrate that the system temporal resolution can be as good as 2.6 ± 0.2 ps for visible wavelengths and 4.3 ± 0.2 ps at 1,550 nm
    corecore