217 research outputs found

    CHEM 109: General Chemistry I—A Peer Review of Teaching Project Benchmark Portfolio

    Get PDF
    This portfolio has been developed for CHEM 109: General Chemistry I. The course is the first of a freshman level two semester sequence in General Chemistry taken by students with majors in a wide variety of technical and scientific disciplines. CHEM 109 is a high enrollment class, with class sizes for individual sections nearing 200 students. The development of this portfolio was conducted with the following objectives: 1. Clearly identify, justify, and codify the major learning objectives for this course, 2. Describe and rationalize the course structure and learning assessment methods, 3. Analyze and reflect on student achievement in the context of the objectives and assessments. Reflections on the portfolio development outcomes and potential changes for future iterations of the course are also presented

    Ion Mobility-Resolved Collision-Induced Dissociation and Electron Transfer Dissociation of N-Glycopeptides: Gathering Orthogonal Connectivity Information from a Single Mass- Selected Precursor Ion Population

    Get PDF
    Glycopeptide-level mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses are commonly performed to establish site-specific protein glycosylation profiles that are of central importance to gaining structure-function insights on glycoproteins. Confoundingly, the complete characterization of glycopeptide connectivity usually requires the acquisition of multiple MS/MS fragmentation spectra. Complementary ion fragmentation techniques such as collision-induced dissociation (CID) and electron transfer dissociation (ETD) are often applied in concert to address this need. While structurally informative, the requirement for acquisition of two MS/MS spectra per analyte places considerable limitations upon the breadth and depth of large-scale glycoproteomic inquiry. Here, a previously developed method of multiplexing CID and ETD is applied to the study of glycopeptides for the first time. Integration of the two dissociation methods was accomplished through addition of an ion mobility (IM) dimension that disperses the two stages of MS/MS in time. This allows the two MS/MS spectra to be acquired within a few milliseconds of one another, and to be deconvoluted in post-processing. Furthermore, the method allows both fragmentation readouts to be obtained from the same precursor ion packet, thus reducing the inefficiencies imposed by separate CID and ETD acquisitions and the relatively poor precursor ion to fragment ion conversion typical of ETD. N-linked glycopeptide ions ranging in molecular weight from 1800 to 6500 u were generated from four model glycoproteins that collectively encompassed paucimannosidic, high mannose, and complex types of N-glycosylation. In each case, IM-resolved CID and ETD events provided complete coverage of the glycan topology and peptide sequence coverages ranging from 48.4% (over 32 amino acid residues) to 85.7% (over eight amino acid residues). The potential of this method for large-scale glycoproteomic analysis is discussed

    A Comparison of Energy-Resolved Vibrational Activation/Dissociation Characteristics of Protonated and Sodiated High Mannose N-Glycopeptides

    Get PDF
    Fragmentation of glycopeptides in tandem mass spectrometry (MS/MS) plays a pivotal role in site-specific protein glycosylation profiling by allowing specific oligosaccharide compositions and connectivities to be associated with specific loci on the corresponding protein. Although MS/MS analysis of glycopeptides has been successfully performed using a number of distinction dissociation methods, relatively little is known regarding the fragmentation characteristics of glycopeptide ions with various charge carriers. In this study, energy-resolved vibrational activation/ dissociation was examined via collision-induced dissociation for a group of related high mannose tryptic glycopeptides as their doubly protonated, doubly sodiated, and hybrid protonated sodium adduct ions. The doubly protonated glycopeptide ions with various compositions were found to undergo fragmentation over a relatively low but wide range of collision energies compared with the doubly sodiated and hybrid charged ions, and were found to yield both glycan and peptide fragmentation depending on the applied collision energy. By contrast, the various doubly sodiated glycopeptides were found to dissociate over a significantly higher but narrow range of collision energies, and exhibited only glycan cleavages. Interestingly, the hybrid protonated sodium adduct ions were consistently the most stable of the precursor ions studied, and provided fragmentation information spanning both the glycan and the peptide moieties. Taken together, these findings illustrate the influence of charge carrier over the energyresolved vibrational activation/dissociation characteristics of glycopeptides, and serve to suggest potential strategies that exploit the analytically useful features uniquely afforded by specific charge carriers or combinations thereof

    Optimizing Sequence Coverage for a Moderate Mass Protein in Nano-Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry

    Get PDF
    Sample pretreatment was optimized to obtain high sequence coverage for human serum albumin (HSA, 66.5 kDa) when using nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nESI-Q-TOF-MS). Use of the final method with trypsin, Lys-C and Glu-C digests gave a combined coverage of 98.8%. The addition of peptide fractionation resulted in 99.7% coverage. These results were comparable to those obtained previously with matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The sample pretreatment/nESI-Q-TOF-MS method was also used with collision-induced dissociation to analyze HSA digests and to identify peptides that could be employed as internal mass calibrants in future studies of modifications to HSA

    Optimizing Sequence Coverage for a Moderate Mass Protein in Nano-Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry

    Get PDF
    Sample pretreatment was optimized to obtain high sequence coverage for human serum albumin (HSA, 66.5 kDa) when using nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nESI-Q-TOF-MS). Use of the final method with trypsin, Lys-C and Glu-C digests gave a combined coverage of 98.8%. The addition of peptide fractionation resulted in 99.7% coverage. These results were comparable to those obtained previously with matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The sample pretreatment/nESI-Q-TOF-MS method was also used with collision-induced dissociation to analyze HSA digests and to identify peptides that could be employed as internal mass calibrants in future studies of modifications to HSA

    Identifying missing dictionary entries with frequency-conserving context models

    Get PDF
    In an effort to better understand meaning from natural language texts, we explore methods aimed at organizing lexical objects into contexts. A number of these methods for organization fall into a family defined by word ordering. Unlike demographic or spatial partitions of data, these collocation models are of special importance for their universal applicability. While we are interested here in text and have framed our treatment appropriately, our work is potentially applicable to other areas of research (e.g., speech, genomics, and mobility patterns) where one has ordered categorical data (e.g., sounds, genes, and locations). Our approach focuses on the phrase (whether word or larger) as the primary meaning-bearing lexical unit and object of study. To do so, we employ our previously developed framework for generating word-conserving phrase-frequency data. Upon training our model with the Wiktionary, an extensive, online, collaborative, and open-source dictionary that contains over 100000 phrasal definitions, we develop highly effective filters for the identification of meaningful, missing phrase entries. With our predictions we then engage the editorial community of the Wiktionary and propose short lists of potential missing entries for definition, developing a breakthrough, lexical extraction technique and expanding our knowledge of the defined English lexicon of phrases
    • …
    corecore