73 research outputs found

    Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.

    Get PDF
    Small ubiquitin-like modifier (SUMO) modification regulates numerous cellular processes. Unlike ubiquitin, detection of endogenous SUMOylated proteins is limited by the lack of naturally occurring protease sites in the C-terminal tail of SUMO proteins. Proteome-wide detection of SUMOylation sites on target proteins typically requires ectopic expression of mutant SUMOs with introduced tryptic sites. Here, we report a method for proteome-wide, site-level detection of endogenous SUMOylation that uses α-lytic protease, WaLP. WaLP digestion of SUMOylated proteins generates peptides containing SUMO-remnant diglycyl-lysine (KGG) at the site of SUMO modification. Using previously developed immuno-affinity isolation of KGG-containing peptides followed by mass spectrometry, we identified 1209 unique endogenous SUMO modification sites. We also demonstrate the impact of proteasome inhibition on ubiquitin and SUMO-modified proteomes using parallel quantitation of ubiquitylated and SUMOylated peptides. This methodological advancement enables determination of endogenous SUMOylated proteins under completely native conditions

    The dependability of students\u27 ratings of preceptors

    Get PDF
    No abstract provided

    Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group.

    Get PDF
    Funder: Radboud University Medical CenterThe European Society of Breast Radiology (EUSOBI) established an International Breast DWI working group. The working group consists of clinical breast MRI experts, MRI physicists, and representatives from large vendors of MRI equipment, invited based upon proven expertise in breast MRI and/or in particular breast DWI, representing 25 sites from 16 countries. The aims of the working group are (a) to promote the use of breast DWI into clinical practice by issuing consensus statements and initiate collaborative research where appropriate; (b) to define necessary standards and provide practical guidance for clinical application of breast DWI; (c) to develop a standardized and translatable multisite multivendor quality assurance protocol, especially for multisite research studies; (d) to find consensus on optimal methods for image processing/analysis, visualization, and interpretation; and (e) to work collaboratively with system vendors to improve breast DWI sequences. First consensus recommendations, presented in this paper, include acquisition parameters for standard breast DWI sequences including specifications of b values, fat saturation, spatial resolution, and repetition and echo times. To describe lesions in an objective way, levels of diffusion restriction/hindrance in the breast have been defined based on the published literature on breast DWI. The use of a small ROI placed on the darkest part of the lesion on the ADC map, avoiding necrotic, noisy or non-enhancing lesion voxels is currently recommended. The working group emphasizes the need for standardization and quality assurance before ADC thresholds are applied. The working group encourages further research in advanced diffusion techniques and tailored DWI strategies for specific indications. Key Points • The working group considers breast DWI an essential part of a multiparametric breast MRI protocol and encourages its use. • Basic requirements for routine clinical application of breast DWI are provided, including recommendations on b values, fat saturation, spatial resolution, and other sequence parameters. • Diffusion levels in breast lesions are defined based on meta-analysis data and methods to obtain a reliable ADC value are detailed

    Expression and characterization of recombinant human angiotensinogen in a heterologous eukaryotic cell line

    No full text
    Transfection of Chinese hamster ovary cells with an expression plasmid containing a full length human angiotensinogen cDNA has provided cell lines that secrete recombinant angiotensinogen in large quantities. This angiotensinogen is immunologically identical to plasma angiotensinogen and can be cleaved by human kidney renin (EC 3.4.23.15.). The peptide liberated by renin cleavage is immunologically identical to standard angiotensin I and shows a retention time on isocratic reversed-phase high-pressure liquid chromatography identical to that of standard angiotensin I. The heterogeneity of recombinant angiotensinogen on sodium dodecyl sulfate-polyacrylamide gel electrophoresis differs from that of plasma angiotensinogen. Treatment with endoglycosidases demonstrated that this difference is restricted to that of N-glycans and that N-glycans correspond to the quasi-totality of the carbohydrate content of both recombinant and plasma angiotensinogens. The development of a system capable of expressing human angiotensinogen cDNA in mammalian cells and the ability to obtain the corresponding angiotensinogen in large quantities will allow new studies on structure-function relationships of this protein

    Internalization of the rat AT1a and AT1b receptors: pharmacological and functional requirements

    Get PDF
    AbstractThe capacity of the angiotensin II (AngII) agonist [Sar1]AngII, the antagonist [Sar1-I1e8]AngII and the non-peptidic antagonist DuP753 to undergo receptor internalization were studied in Chinese hamster ovary cells expressing rat AngII type 1a or 1b receptors (AT1a or AT1b) or a mutant of AT1a (Asn74) unable to couple G-protein. In this expression system, the ligand-induced internalization of rat AT1a and AT1b are similar. Moreover, peptidic ligands, either the agonist or antagonist, induce a significant internalization of AT1 receptors, but the non-peptidic antagonist DuP753 is far less potent. Finally, the normal internalization of the mutant Asn74 demonstrates that receptor activation and G-protein coupling are not required for AT1ainternalization

    The AT 1A

    No full text

    Cloning and characterization of the human V3 pituitary vasopressin receptor

    Get PDF
    AbstractArginine-vasopressin (AVP) plays a determinant role in the normal ACTH response to stress in mammals. We cloned a human cDNA coding a 424 amino acid G-protein coupled receptor structurally related to the vasopressin/oxytocin receptor family. When expressed in COS cells, this receptor binds AVP with a high affinity (Kd = 0.55 ± 0.13 nM) and is functionally coupled to phospholipase C. Competition studies with peptidic or non peptidic AVP analogues reveal that it is pharmacologically distinct from V1a and V2 AVP receptors and therefore it is designated V3. RT-PCR analysis shows that the human V3 receptor is expressed in normal pituitary and also in kidney, but is undetectable in liver, myometrium and adrenal gland. Northern blot analysis reveals a ∼4.8 kb messenger in human corticotropic pituitary adenomas

    Severe Arterial Hypertension from Cullin 3 Mutations Is Caused by Both Renal and Vascular Effects

    No full text
    International audienceBackground Mutations in four genes, WNK lysine deficient protein kinase 1 and 4 (WNK1 and WNK4), kelch like family member 3 (KLHL3), or Cullin 3 (CUL3), can result in familial hyperkalemic hypertension (FHHt), a rare Mendelian form of human arterial hypertension. Although all mutations result in an increased abundance of WNK1 or WNK4, all FHHt-causing CUL3 mutations, resulting in the skipping of exon 9, lead to a more severe phenotype. Methods We created and compared two mouse models, one expressing the mutant Cul3 protein ubiquitously (pgk-Cul3∆9) and the other specifically in vascular smooth muscle cells (SM22-Cul3∆9). We conducted pharmacologic investigations on isolated aortas and generated stable and inducible HEK293 cell lines that overexpress the wild-type Cul3 or mutant Cul3 (Cul3∆9) protein. Results As expected, pgk-Cul3∆9 mice showed marked hypertension with significant hyperkalemia, hyperchloremia and low renin. BP increased significantly in SM22-Cul3∆9 mice, independent of any measurable effect on renal transport. Only pgk-Cul3∆9 mice displayed increased expression of the sodium chloride cotransporter and phosphorylation by the WNK-SPAK kinases. Both models showed altered reactivity of isolated aortas to phenylephrine and acetylcholine, as well as marked acute BP sensitivity to the calcium channel blocker amlodipine. Aortas from SM22-Cul3∆9 mice showed increased expression of RhoA, a key molecule involved in regulation of vascular tone, compared with aortas from control mice. We also observed increased RhoA abundance and t1/2 in Cul3∆9-expressing cells, caused by decreased ubiquitination. Conclusions Mutations in Cul3 cause severe hypertension by affecting both renal and vascular function, the latter being associated with activation of RhoA
    corecore