2,911 research outputs found

    Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes

    Get PDF
    Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions

    Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes

    Get PDF
    Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0271-6) contains supplementary material, which is available to authorized users

    Palifermin for oral mucositis after intensive therapy for hematologic cancers

    Get PDF
    BACKGROUND: Oral mucositis is a complication of intensive chemotherapy and radiotherapy with no effective treatment. We tested the ability of palifermin (recombinant human keratinocyte growth factor) to decrease oral mucosal injury induced by cytotoxic therapy. METHODS: This double-blind study compared the effect of palifermin with that of a placebo on the development of oral mucositis in 212 patients with hematologic cancers; 106 patients received palifermin (60 microg per kilogram of body weight per day) and 106 received a placebo intravenously for three consecutive days immediately before the initiation of conditioning therapy (fractionated total-body irradiation plus high-dose chemotherapy) and after autologous hematopoietic stem-cell transplantation. Oral mucositis was evaluated daily for 28 days after transplantation. RESULTS: The incidence of oral mucositis of World Health Organization (WHO) grade 3 or 4 was 63 percent in the palifermin group and 98 percent in the placebo group (P\u3c0.001). Among patients with this degree of mucositis, the median duration of mucositis was 6 days (range, 1 to 22) in the palifermin group and 9 days (range, 1 to 27) in the placebo group. Among all patients, regardless of the occurrence of mucositis, the median duration of oral mucositis of WHO grade 3 or 4 was 3 days (range, 0 to 22) in the palifermin group and 9 days (range, 0 to 27) in the placebo group (P\u3c0.001). As compared with placebo, palifermin was associated with significant reductions in the incidence of grade 4 oral mucositis (20 percent vs. 62 percent, P\u3c0.001), patient-reported soreness of the mouth and throat (area-under-the-curve score, 29.0 [range, 0 to 98] vs. 46.8 [range, 0 to 110]; P\u3c0.001), the use of opioid analgesics (median, 212 mg of morphine equivalents [range, 0 to 9418] vs. 535 mg of morphine equivalents [range, 0 to 9418], P\u3c0.001), and the incidence of use of total parenteral nutrition (31 percent vs. 55 percent, P\u3c0.001). Adverse events, mainly rash, pruritus, erythema, mouth and tongue disorders, and taste alteration, were mild to moderate in severity and were transient. CONCLUSIONS: Palifermin reduced the duration and severity of oral mucositis after intensive chemotherapy and radiotherapy for hematologic cancers

    Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors

    Get PDF
    The Saccharomyces cerevisiae Swi2-like factors Rad54 and Rdh54 play multifaceted roles in homologous recombination via their DNA translocase activity. Aside from promoting Rad51-mediated DNA strand invasion of a partner chromatid, Rad54 and Rdh54 can remove Rad51 from duplex DNA for intracellular recycling. Although the in vitro properties of the two proteins are similar, differences between the phenotypes of the null allele mutants suggest that they play different roles in vivo. Through the isolation of a novel RAD51 allele encoding a protein with reduced affinity for DNA, we provide evidence that Rad54 and Rdh54 have different in vivo interactions with Rad51. The mutant Rad51 forms a complex on duplex DNA that is more susceptible to dissociation by Rdh54. This Rad51 variant distinguishes the in vivo functions of Rad54 and Rdh54, leading to the conclusion that two translocases remove Rad51 from different substrates in vivo. Additionally, we show that a third Swi2-like factor, Uls1, contributes toward Rad51 clearance from chromatin in the absence of Rad54 and Rdh54, and define a hierarchy of action of the Swi2-like translocases for chromosome damage repair

    An Empirical Comparison of Meta‐analysis and Mega‐analysis of Individual Participant Data for Identifying Gene‐Environment Interactions

    Full text link
    For analysis of the main effects of SNPs, meta‐analysis of summary results from individual studies has been shown to provide comparable results as “mega‐analysis” that jointly analyzes the pooled participant data from the available studies. This fact revolutionized the genetic analysis of complex traits through large GWAS consortia. Investigations of gene‐environment (G×E) interactions are on the rise since they can potentially explain a part of the missing heritability and identify individuals at high risk for disease. However, for analysis of gene‐environment interactions, it is not known whether these methods yield comparable results. In this empirical study, we report that the results from both methods were largely consistent for all four tests; the standard 1 degree of freedom (df) test of main effect only, the 1 df test of the main effect (in the presence of interaction effect), the 1 df test of the interaction effect, and the joint 2 df test of main and interaction effects. They provided similar effect size and standard error estimates, leading to comparable P ‐values. The genomic inflation factors and the number of SNPs with various thresholds were also comparable between the two approaches. Mega‐analysis is not always feasible especially in very large and diverse consortia since pooling of raw data may be limited by the terms of the informed consent. Our study illustrates that meta‐analysis can be an effective approach also for identifying interactions. To our knowledge, this is the first report investigating meta‐versus mega‐analyses for interactions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106866/1/gepi21800.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106866/2/gepi21800-sup-0001-SuppMat.pd

    Large multi-ethnic genetic analyses of amyloid imaging identify new genes for Alzheimer disease

    Get PDF
    Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aβ) deposits in the brain and to study Alzheimer\u27s disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; β = 0.35, SE = 0.01, P = 6.2 × 1

    Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experimenta)

    Get PDF
    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.United States. Department of Energy (Contract No. DE-FC02-99ER54512-CMOD)United States. Department of Energy. Office of Science (Contract No. DE-AC02- 05CH11231
    corecore