32 research outputs found

    Response to ibudilast treatment according to progressive multiple sclerosis disease phenotype

    Get PDF
    OBJECTIVE: Determine whether a treatment effect of ibudilast on brain atrophy rate differs between participants with primary (PPMS) and secondary (SPMS) progressive multiple sclerosis. BACKGROUND: Progressive forms of MS are both associated with continuous disability progression. Whether PPMS and SPMS differ in treatment response remains unknown. DESIGN/METHODS: SPRINT-MS was a randomized, placebo-controlled 96-week phase 2 trial in both PPMS (n = 134) and SPMS (n = 121) patients. The effect of PPMS and SPMS phenotype on the rate of change of brain atrophy measured by brain parenchymal fraction (BPF) was examined by fitting a three-way interaction linear-mixed model. Adjustment for differences in baseline demographics, disease measures, and brain size was explored. RESULTS: Analysis showed that there was a three-way interaction between the time, treatment effect, and disease phenotype (P \u3c 0.06). After further inspection, the overall treatment effect was primarily driven by patients with PPMS (P \u3c 0.01), and not by patients with SPMS (P = 0.97). This difference may have been due to faster brain atrophy progression seen in the PPMS placebo group compared to SPMS placebo (P \u3c 0.02). Although backward selection (P \u3c 0.05) retained age, T2 lesion volume, RNFL, and longitudinal diffusivity as significant baseline covariates in the linear-mixed model, the adjusted overall treatment effect was still driven by PPMS (P \u3c 0.01). INTERPRETATION: The previously reported overall treatment effect of ibudilast on worsening of brain atrophy in progressive MS appears to be driven by patients with PPMS that may be, in part, because of the faster atrophy progression rates seen in the placebo-treated group

    Female hormonal exposures and neuromyelitis optica symptom onset in a multicenter study

    Get PDF
    Objective: To study the association between hormonal exposures and disease onset in a cohort of women with neuromyelitis optica spectrum disorder (NMOSD). Methods: Reproductive history and hormone use were assessed using a standardized reproductive survey administered to women with NMOSD (82% aquaporin-4 antibody positive) at 8 clinical centers. Using multivariable regression, we examined the association between reproductive exposures and age at first symptom onset (FS). Results: Among 217 respondents, the mean age at menarche was 12.8 years (SD 1.7). The mean number of pregnancies was 2.1 (SD 1.6), including 0.3 (SD 0.7) occurring after onset of NMOSD symptoms. In the 117 participants who were postmenopausal at the time of the questionnaire, 70% reported natural menopause (mean age: 48.9 years [SD 3.9]); fewer than 30% reported systemic hormone therapy (HT) use. Mean FS age was 40.1 years (SD 14.2). Ever-use of systemic hormonal contraceptives (HC) was marginally associated with earlier FS (39 vs 43 years, p = 0.05). Because HC use may decrease parity, when we included both variables in the model, the association between HC use and FS age became more significant (estimate = 2.7, p = 0.007). Among postmenopausal participants, 24% reported NMOSD onset within 2 years of (before or after) menopause. Among these participants, there was no association between age at menopause or HT use and age at NMOSD onset. Conclusions: Overall, age at NMOSD onset did not show a strong relationship with endogenous hormonal exposures. An earlier onset age did appear to be marginally associated with systemic HC exposure, an association that requires confirmation in future studies

    Impaired Structural Connectivity of Socio-Emotional Circuits in Autism Spectrum Disorders: A Diffusion Tensor Imaging Study

    Get PDF
    Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD.DTI scans were acquired for 19 children and adolescents with ASD (∼8-18 years; mean 12.4±3.1) and 16 age and IQ matched controls (∼8-18 years; mean 12.3±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≤12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing.Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder

    The present efficacy of multiple sclerosis therapeutics: Is the new 66% just the old 33%?

    No full text
    A challenge for the clinician treating patients with multiple sclerosis (MS) is to determine the most effective treatment while weighing the benefits and risks. Results of the phase 2 and phase 3 studies on natalizumab were received with great interest, in part due to the “improved” risk reduction for relapse rate, disease progression, and MRI metrics observed in comparison to results in trials of beta-interferon and glatiramer acetate. However, comparison across trials is invalid, in large part due to differences in the study populations. The increased efficacy observed in more recent trials has also been attributed to a fundamental change in subjects with MS enrolled in recent trials compared with the prior decade. In this article, we debate the relative efficacy of natalizumab vs the older injectable therapies

    Axonal and myelin changes and their inter-relationship in the optic radiations in people with multiple sclerosis

    No full text
    Background: The imaging g-ratio, estimated from axonal volume fraction (AVF) and myelin volume fraction (MVF), is a novel biomarker of microstructural tissue integrity in multiple sclerosis (MS). Objective: To assess axonal and myelin changes and their inter-relationship as measured by g-ratio in the optic radiations (OR) in people with MS (pwMS) with and without previous optic neuritis (ON) compared to healthy controls (HC). Methods: Thirty pwMS and 17 HCs were scanned on a 3Tesla Connectom scanner. AVF and MVF, derived from a multi-shell diffusion protocol and macromolecular tissue volume, respectively, were measured in normal-appearing white matter (NAWM) and lesions within the OR and used to calculate imaging g-ratio. Results: OR AVF and MVF were decreased in pwMS compared to HC, and in OR lesions compared to NAWM, whereas the g-ratio was not different. Compared to pwMS with previous ON, AVF and g-ratio tended to be higher in pwMS without prior ON. AVF and MVF, particularly in NAWM, were positively correlated with retinal thickness, which was more pronounced in pwMS with prior ON. Conclusion: Axonal measures reflect microstructural tissue damage in the OR, particularly in the setting of remote ON, and correlate with established metrics of visual health in MS

    In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis

    No full text
    International audienceNeuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired t-test). Cortical thickness did not differ significantly between multiple sclerosis subjects and controls. Higher orientation dispersion in the left primary motor-somatosensory cortex was associated with increased Expanded Disability Status Scale scores in surface-based general linear modelling (P < 0.05). Microstructural pathology was frequent in early multiple sclerosis, and present mainly focally in cortical lesions, whereas more diffusely in white matter. These results suggest early demyelination with loss of cells and/or cell volumes in cortical and white matter lesions, with additional axonal dispersion in white matter lesions. In the cortex, focal lesion changes might precede diffuse atrophy with cortical thinning. Findings in the normal-appearing white matter reveal early axonal pathology outside inflammatory demyelinating lesions
    corecore