113 research outputs found

    Sweepouts of amalgamated 3-manifolds

    Full text link
    We show that if two 3-manifolds with toroidal boundary are glued via a `sufficiently complicated' map then every Heegaard splitting of the resulting 3-manifold is weakly reducible. Additionally, if Z is a manifold obtained by gluing X and Y, two connected small manifolds with incompressible boundary, along a closed surface F. Then the genus g(Z) of Z is greater than or equal to 1/2(g(X)+g(Y)-2g(F)). Both results follow from a new technique to simplify the intersection between an incompressible surface and a strongly irreducible Heegaard splitting.Comment: This is the version published by Algebraic & Geometric Topology on 24 February 200

    Implementing Good Practices Programs to Encourage Production of High-Quality, Safer Produce in Mississippi

    Get PDF
    Fifty-four growers/producers attended four 1-day good agricultural practices (GAP) and good handling practices (GHP) workshops at four locations in Mississippi. Pre- and postworkshop survey data indicated that the participants\u27 food safety knowledge increased by 15%. Furthermore, the workshops helped producers develop their own food safety plans. The workshops also trained the producers to be prepared for U.S. Department of Agriculture (USDA) GAP and GHP audits. To assist producers in preparing for these audits, two mock audits were conducted after the workshops. As a result of the program, several producers became ready to be audited, and at least one producer became USDA GAP certified

    Fundamental trade-offs between information flow in single cells and cellular populations

    Get PDF
    Signal transduction networks allow eukaryotic cells to make decisions based on information about intracellular state and the environment. Biochemical noise significantly diminishes the fidelity of signaling: networks examined to date seem to transmit less than 1 bit of information. It is unclear how networks that control critical cell-fate decisions (e.g., cell division and apoptosis) can function with such low levels of information transfer. Here, we use theory, experiments, and numerical analysis to demonstrate an inherent trade-off between the information transferred in individual cells and the information available to control population-level responses. Noise in receptor-mediated apoptosis reduces information transfer to approximately 1 bit at the single-cell level but allows 3–4 bits of information to be transmitted at the population level. For processes such as eukaryotic chemotaxis, in which single cells are the functional unit, we find high levels of information transmission at a single-cell level. Thus, low levels of information transfer are unlikely to represent a physical limit. Instead, we propose that signaling networks exploit noise at the single-cell level to increase population-level information transfer, allowing extracellular ligands, whose levels are also subject to noise, to incrementally regulate phenotypic changes. This is particularly critical for discrete changes in fate (e.g., life vs. death) for which the key variable is the fraction of cells engaged. Our findings provide a framework for rationalizing the high levels of noise in metazoan signaling networks and have implications for the development of drugs that target these networks in the treatment of cancer and other diseases

    Formation and abundance of 5-hydroxymethylcytosine in RNA.

    Get PDF
    RNA methylation is emerging as a regulatory RNA modification that could have important roles in the control and coordination of gene transcription and protein translation. Herein, we describe an in vivo isotope-tracing methodology to demonstrate that the ribonucleoside 5-methylcytidine (m(5)C) is subject to oxidative processing in mammals, forming 5-hydroxymethylcytidine (hm(5)C) and 5-formylcytidine (f(5)C). Furthermore, we have identified hm(5)C in total RNA from all three domains of life and in polyA-enriched RNA fractions from mammalian cells. This suggests m(5)C oxidation is a conserved process that could have critical regulatory functions inside cells.This work was supported by the Cambridge PhD Training Programme in Chemical Biology and Molecular Medicine and the Wellcome Trust (grant number 099232/Z/12/Z). Dr. Donna Bond is thanked for the provision of A. thaliana total RNA and Drs. Santiago Uribe-Lewis and Adele Murrell are acknowledged for the labelled mouse tissue supply.This is the final published version. It first appeared at http://onlinelibrary.wiley.com/doi/10.1002/cbic.201500013/abstract;jsessionid=61B9B3D8937FE50CFA4954A4C4B445B6.f02t04

    Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals

    Get PDF
    The valley degree of freedom in crystals offers great potential for manipulating classical waves, however, few studies have investigated valley states with complex wavenumbers, valley states in graded systems, or dispersion tuning for valley states. Here, we present tunable valley phononic crystals (PCs) composed of hybrid channel-cavity cells with three tunable parameters. Our PCs support valley states and Dirac cones with complex wavenumbers. They can be configured to form chirped valley PCs in which edge modes are slowed to zero group velocity states, where the energy at different frequencies accumulates at different designated locations. They enable multiple functionalities, including tuning of dispersion relations for valley states, robust routing of surface acoustic waves, and spatial modulation of group velocities. This work may spark future investigations of topological states with complex wavenumbers in other classical systems, further study of topological states in graded materials, and the development of acoustic devices

    5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer

    Get PDF
    The authors would like to acknowledge the support of The University of Cambridge, Cancer Research UK (CRUK SEB-Institute Group Award A ref10182; CRUK Senior fellowship C10112/A11388 to AEKI) and Hutchison Whampoa Limited. The Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre. FF is a ULB Professor funded by grants from the F.N.R.S. and Télévie, the IUAP P7/03 programme, the ARC (AUWB-2010-2015 ULB-No 7), the WB Health program and the Fonds Gaston Ithier. Data access: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jpwzvsowiyuamzs&acc=GSE47592Background : The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise. Results : Here, we show that colorectal tumours and cancer cells express Ten-Eleven-Translocation (TET) transcripts at levels similar to normal tissues. Genome-wide analyses show that promoters marked by 5hmC in normal tissue, and those identified as TET2 targets in colorectal cancer cells, are resistant to methylation gain in cancer. In vitro studies of TET2 in cancer cells confirm that these promoters are resistant to methylation gain independently of sustained TET2 expression. We also find that a considerable number of the methylation gain-resistant promoters marked by 5hmC in normal colon overlap with those that are marked with poised bivalent histone modifications in embryonic stem cells. Conclusions : Together our results indicate that promoters that acquire 5hmC upon normal colon differentiation are innately resistant to neoplastic hypermethylation by mechanisms that do not require high levels of 5hmC in tumours. Our study highlights the potential of cytosine modifications as biomarkers of cancerous cell proliferation.Publisher PDFPeer reviewe
    • …
    corecore