57 research outputs found

    Genetic relatedness in carbapenem-resistant isolates from clinical specimens in Ghana using ERIC-PCR technique.

    Get PDF
    AIM: Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis is a powerful tool for epidemiological analysis of bacterial species. This study aimed to determine the genetic relatedness or variability in carbapenem-resistant isolates by species using this technique. METHODS: A total of 111 non-duplicated carbapenem-resistant (CR) Gram-negative bacilli isolates from a three-year collection period (2012-2014) were investigated by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) in four selected hospital laboratories in Ghana. The isolates were also screened for carbapenemase and extended spectrum β-lactamase genes by PCR. RESULTS: A proportion of 23.4% (26/111) of the genomic DNA extracts were carriers of PCR-positive carbapenemase genes, including 14.4% blaNDM-1, 7.2% blaVIM-1 and 1.8% blaOXA-48. The highest prevalence of carbapenemase genes was from non-fermenters, Acinetobacter baumannii and Pseudomonas aeruginosa. For the ESBL genes tested, 96.4% (107/111) of the CR isolates co-harboured both TEM-1 and SHV-1 genes. The ERIC-PCR gel analysis exhibited 1 to 8 bands ranging from 50 to 800 bp. Band patterns of 93 complex dissimilarities were visually distinguished from the 111 CR isolates studied, while the remaining 18 showed band similarities in pairs. CONCLUSION: Overall, ERIC-PCR fingerprints have shown a high level of diversity among the species of Gram-negative bacterial pathogens and specimen collection sites in this study. ERIC-PCR optimisation assays may serve as a suitable genotyping tool for the assessment of genetic diversity or close relatedness of isolates that are found in clinical settings

    Phenotypic and genotypic characterization of carbapenem-resistant gram-negative bacilli pathogens from hospitals in Ghana

    Get PDF
    In Ghana, surveillance efforts on antibiotic resistance so far have not covered carbapenem resistance. In this study, our aim was to apply phenotypic and genotypic methods to identify and characterize carbapenem-resistant (CR) Gram-negative bacteria from the hospital environment in Ghana. A collection of 3840 isolates of Gram-negative bacilli infections from various clinical specimens was screened for carbapenem resistance by disc diffusion for imipenem, meropenem, and doripenem. Minimum Inhibitory Concentration (MIC) of the CR isolates was determined by E-test for the three carbapenems. All the CR isolates were further screened for carbapenemase activity by modified Hodge and boronic acid disc synergy tests. The CR isolates were investigated for the presence of carbapenemase and extended-spectrum beta-lactamase genes by PCR and confirmed by sequencing. The overall prevalence of CR isolates was 2.9% (111/3840). Based on the disc diffusion test, prevalence of resistance to carbapenems were doripenem (75%), imipenem (66.7%), and meropenem (58%). The highest measurable MIC levels (≥32 μg/mL) were observed in 56.8% of CR isolates with the nonfermenters, Pseudomonas aeruginosa (24.3%) and Acinetobacter species (18.9%), disproportionately represented. Phenotypic identification of carbapenamase activity occurred in 18.9% of the CR isolates by the modified Hodge test and 2.7% by Boronic acid disc synergy test; 21.6% exhibited carbapenemase production by both methods. All the CR isolates carried ESBL genes (blaTEM and blaSHV), whereas 23.4% were carriers of carbapenemase genes, of which 14.4% were blaNDM-1, 7.2% blaVIM-1, and 1.8% blaOXA-48. Phylogenetically, the CR isolates were diverse and showed limited relatedness to isolates from other geographical regions

    A Streptococcus pneumoniae lineage usually associated with pneumococcal conjugate vaccine (PCV) serotypes is the most common cause of serotype 35B invasive disease in South Africa, following routine use of PCV.

    Get PDF
    Pneumococcal serotype 35B is an important non-conjugate vaccine (non-PCV) serotype. Its continued emergence, post-PCV7 in the USA, was associated with expansion of a pre-existing 35B clone (clonal complex [CC] 558) along with post-PCV13 emergence of a non-35B clone previously associated with PCV serotypes (CC156). This study describes lineages circulating among 35B isolates in South Africa before and after PCV introduction. We also compared 35B isolates belonging to a predominant 35B lineage in South Africa (GPSC5), with isolates belonging to the same lineage in other parts of the world. Serotype 35B isolates that caused invasive pneumococcal disease in South Africa in 2005-2014 were characterized by whole-genome sequencing (WGS). Multi-locus sequence types and global pneumococcal sequence clusters (GPSCs) were derived from WGS data of 63 35B isolates obtained in 2005-2014. A total of 262 isolates that belong to GPSC5 (115 isolates from South Africa and 147 from other countries) that were sequenced as part of the global pneumococcal sequencing (GPS) project were included for comparison. Serotype 35B isolates from South Africa were differentiated into seven GPSCs and GPSC5 was most common (49 %, 31/63). While 35B was the most common serotype among GPSC5/CC172 isolates in South Africa during the PCV13 period (66 %, 29/44), 23F was the most common serotype during both the pre-PCV (80 %, 37/46) and PCV7 period (32 %, 8/25). Serotype 35B represented 15 % (40/262) of GPSC5 isolates within the global GPS database and 75 % (31/40) were from South Africa. The predominance of the GPSC5 lineage within non-vaccine serotype 35B, is possibly unique to South Africa and warrants further molecular surveillance of pneumococci

    Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life

    No full text
    Stroke is ranked as the second leading cause of death worldwide with an annual mortality rate of about 5.5 million. Not only does the burden of stroke lie in the high mortality but the high morbidity also results in up to 50% of survivors being chronically disabled. Thus stroke is a disease of immense public health importance with serious economic and social consequences. The public health burden of stroke is set to rise over future decades because of demographic transitions of populations, particularly in developing countries. This paper provides an overview of stroke in the 21st century from a public health perspective

    Nosocomial Pathogens: An In-Depth Analysis of the Vectorial Potential of Cockroaches

    No full text
    Nosocomial or healthcare-associated infections are regarded as the most frequent adverse event that threatens patients’ safety and has serious economic and social consequences. Cockroach infestation is common in many hospitals, especially in the developing world. Common nosocomial pathogens isolated from cockroaches include Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. Cockroaches also harbor epidemiologically significant antibiotic-resistant organisms, such as carbapenem-resistant Enterobacteriaceae, which complicate nosocomial infections. Therefore, cockroaches constitute an important vector for nosocomial pathogens, and there should be zero tolerance for their presence in healthcare facilities. This paper aims to elucidate the possible role of cockroaches in nosocomial infections by reviewing the relevant research publications

    Molecular typing of the pneumococcus and its application in epidemiology in sub-Saharan Africa

    Get PDF
    Molecular typing of the pneumococcus has played a crucial role in understanding the epidemiology of the organism. However, most of what is known about molecular epidemiology of the pneumococcus pertains to the developed world. The brunt of pneumococcal infections is borne by sub-Saharan African countries, which makes epidemiological monitoring of the pneumococcus essential in this region of the world. This review paper focuses on molecular typing of the pneumococcus and what is known about epidemiology of the organism in sub-Saharan Africa based on the various typing methods. Several molecular typing methods are available for typing the pneumococcus and the major ones include multilocus sequence typing, multilocus enzyme electrophoresis, serotyping and DNA fingerprinting methods such as pulsed field gel electrophoresis and amplified fragment length polymorphism. Currently, multilocus sequence typing is the most suitable method for typing the pneumococcus. The pneumococcal population structure in sub-Saharan Africa appears to be quite different from that of the developed world, and pneumococcal serotype 1 related to the ST 618 clone and clones of the ST 217 clonal complex are responsible for outbreaks in sub-Saharan Africa

    Comparative phylogenomics of Streptococcus pneumoniae isolated from invasive disease and nasopharyngeal carriage from West Africans.

    Get PDF
    BACKGROUND: We applied comparative phylogenomics (whole genome comparisons of microbes using DNA microarrays combined with Bayesian-based phylogenies) to investigate S. pneumoniae isolates from West Africa, with the aim of providing insights into the pathogenicity and other features related to the biology of the organism. The strains investigated comprised a well defined collection of 58 invasive and carriage isolates that were sequenced typed and included eight different S. pneumoniae serotypes (1, 3, 5, 6A, 11, 14, 19 F and 23 F) of varying invasive disease potential. RESULTS: The core genome of the isolates was estimated to be 38% and was mainly represented by gene functional categories associated with housekeeping functions. Comparison of the gene content of invasive and carriage isolates identified at least eleven potential genes that may be important in virulence including surface proteins, transport proteins, transcription factors and hypothetical proteins. Thirteen accessory regions (ARs) were also identified and did not show any loci association with the eleven virulence genes. Intraclonal diversity (isolates of the same serotype and MLST but expressing different patterns of ARs) was observed among some clones including ST 1233 (serotype 5), ST 3404 (serotype 5) and ST 3321 (serotype 14). A constructed phylogenetic tree of the isolates showed a high level of heterogeneity consistent with the frequent S. pneumoniae recombination. Despite this, a homogeneous clustering of all the serotype 1 strains was observed. CONCLUSIONS: Comparative phylogenomics of invasive and carriage S. pneumoniae isolates identified a number of putative virulence determinants that may be important in the progression of S. pneumoniae from the carriage phase to invasive disease. Virulence determinants that contribute to S. pneumoniae pathogenicity are likely to be distributed randomly throughout its genome rather than being clustered in dedicated loci or islands. Compared to other S. pneumoniae serotypes, serotype 1 appears most genetically uniform

    Carbapenem Resistance: A Review

    No full text
    Carbapenem resistance is a major and an on-going public health problem globally. It occurs mainly among Gram-negative pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, and may be intrinsic or mediated by transferable carbapenemase-encoding genes. This type of resistance genes are already widespread in certain parts of the world, particularly Europe, Asia and South America, while the situation in other places such as sub-Saharan Africa is not well documented. In this paper, we provide an in-depth review of carbapenem resistance providing up-to-date information on the subject
    corecore