26 research outputs found
ATRX Directs Binding of PRC2 to Xist RNA and Polycomb Targets
X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function
Deconvolving the contributions of cell-type heterogeneity on cortical gene expression
Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer\u27s disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs)
Recommended from our members
A multiple redundant genetic switch locks in the transcriptional signature of T regulatory cells
The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg signature. Computational network inference and experimental testing assessed the contribution of other transcription factors (TF). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability
Meta-Analysis of the Alzheimer\u27s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models.
We present a consensus atlas of the human brain transcriptome in Alzheimer\u27s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington\u27s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies
Recommended from our members
Secreted Metabolites of Bifidobacterium infantis and Lactobacillus acidophilus Protect Immature Human Enterocytes from IL-1β-Induced Inflammation: A Transcription Profiling Analysis
Combination regimens of Bifidobacterium infantis and Lactobacillus acidophilus have been demonstrated to prevent necrotizing enterocolitis (NEC) in clinical trials. However, the molecular mechanisms responsible for this protective effect are not well understood. Additionally, conditioned media from individual cultures of these two probiotics show strain specific modulation of inflammation using in vitro human intestinal NEC models. Here we report a transcription profiling analysis of gene expression in immature human fetal intestinal epithelial cells (H4 cells) pretreated with conditioned media from B. infantis (BCM) or L. acidophilus (LCM) prior to IL-1β stimulation. Compared with control media, the two probiotic-conditioned media (PCM) treatments altered the expression of hundreds of genes involved in the immune response, apoptosis and cell survival, cell adhesion, the cell cycle, development and angiogenesis. In IL-1β-stimulated cells, PCM treatment decreased the upregulation of genes in the NF-κB activation pathway and downregulated genes associated with extracellular matrix (ECM) remodeling. Compared with LCM, BCM showed more significant modulatory effects on ECM remodeling, reflected by a lower p value. IL-6 and IL-8 production was significantly reduced in IL-1β-stimulated cells pretreated with PCM (p<0.05), which was consistent with their altered gene expression. Western blot analysis showed that compared with IL-1β stimulation alone, PCM treatment attenuated the decrease of cytoplasmic IκBα and NF-κB p65 levels as well as the increase of nuclear NF-κB p65 levels in the stimulated cells (p<0.05). In conclusion, PCM treatment exerted anti-inflammatory effects in immature human fetal enterocytes primarily by modulating genes in the NF-κB signaling and ECM remodeling pathways. Additionally, some components of these signaling pathways, particularly the ECM remodeling pathway, were more profoundly affected by BCM than LCM
Recommended from our members
Secreted Metabolites of <i>Bifidobacterium infantis</i> and <i>Lactobacillus acidophilus</i> Protect Immature Human Enterocytes from IL-1β-Induced Inflammation: A Transcription Profiling Analysis
Combination regimens of Bifidobacterium infantis and Lactobacillus acidophilus have been demonstrated to prevent necrotizing enterocolitis (NEC) in clinical trials. However, the molecular mechanisms responsible for this protective effect are not well understood. Additionally, conditioned media from individual cultures of these two probiotics show strain specific modulation of inflammation using in vitro human intestinal NEC models. Here we report a transcription profiling analysis of gene expression in immature human fetal intestinal epithelial cells (H4 cells) pretreated with conditioned media from B. infantis (BCM) or L. acidophilus (LCM) prior to IL-1β stimulation. Compared with control media, the two probiotic-conditioned media (PCM) treatments altered the expression of hundreds of genes involved in the immune response, apoptosis and cell survival, cell adhesion, the cell cycle, development and angiogenesis. In IL-1β-stimulated cells, PCM treatment decreased the upregulation of genes in the NF-κB activation pathway and downregulated genes associated with extracellular matrix (ECM) remodeling. Compared with LCM, BCM showed more significant modulatory effects on ECM remodeling, reflected by a lower p value. IL-6 and IL-8 production was significantly reduced in IL-1β-stimulated cells pretreated with PCM (p<0.05), which was consistent with their altered gene expression. Western blot analysis showed that compared with IL-1β stimulation alone, PCM treatment attenuated the decrease of cytoplasmic IκBα and NF-κB p65 levels as well as the increase of nuclear NF-κB p65 levels in the stimulated cells (p<0.05). In conclusion, PCM treatment exerted anti-inflammatory effects in immature human fetal enterocytes primarily by modulating genes in the NF-κB signaling and ECM remodeling pathways. Additionally, some components of these signaling pathways, particularly the ECM remodeling pathway, were more profoundly affected by BCM than LCM.</p
The mRNA and protein expression of IL-6 and IL-8 in H4 cells.
<p>Gene expression was determined by qRT-PCR (A) and protein level was measured by ELISA (B). Expression levels of genes are normalized to glyceraldehyde-3-phosphate dehydrogenase (GADPH). Relative mRNA levels were calculated using the 2<sup>-ΔΔCt</sup> method and the average ΔCt values of the unstimulated control group served as the calibrator. The gene expression and cytokine production in probiotic-conditioned media treatments was compared to the corresponding control group, unstimulated and IL-1β-stimulated, respectively. All data represent the mean ± the SEM (n = 3 for qRT-PCR and n = 4 for ELISA). A p<0.05 (*) or p<0.001 (**) depicts the significance value. BCM, <i>Bifidobacterium infantis</i>-conditioned media; LCM, <i>Lactobacillus acidophilus</i>-conditioned media.</p
Degradation of cytoplasmic IκBα and nuclear translocation of NF-κB p65 in H4 cells.
<p>Western blot was performed and densitometry of immune blot bands was used for quantification. The protein levels of cytoplasmic IκBα, as well as cytoplasmic and nuclear NF-κBp 65 (A) and quantification of each immuno blot band (B) are displayed. The protein levels in probiotic-conditioned media treatments were compared to the corresponding control group, unstimulated and IL-1β-stimulated, respectively. All data represent the mean ± the SEM (n = 3). A p<0.05 (*) or p<0.001 (**) depicts the significance value. Immunofluorescence staining of NF-κB p65 (green) was performed in H4 cells (C). The fields presented were randomly captured to accurately represent each condition. BCM, <i>Bifidobacterium infantis</i>-conditioned media; LCM, <i>Lactobacillus acidophilus</i>-conditioned media.</p