55 research outputs found

    High-resolution computed tomography and pulmonary function findings of occupational arsenic exposure in workers

    Get PDF
    Background: The number of studies where nonmalignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. Aims: To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Study Design: Retrospective cross-sectional study. Methods: In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. Results: In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Conclusion: Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography

    Mortality Related Risk Factors in High-Risk Pulmonary Embolism in the ICU

    Get PDF
    Introduction. We sought to identify possible risk factors associated with mortality in patients with high-risk pulmonary embolism (PE) after intensive care unit (ICU) admission. Patients and Methods. PE patients, diagnosed with computer tomography pulmonary angiography, were included from two ICUs and were categorized into groups: group 1 high-risk patients and group 2 intermediate/low-risk patients. Results. Fifty-six patients were included. Of them, 41 (73.2%) were group 1 and 15 (26.7%) were group 2. When compared to group 2, need for vasopressor therapy (0 vs 68.3%; p18 (OR 42.47 95% CI 1.50–1201.1), invasive mechanical ventilation (OR 30.10 95% CI 1.96–463.31), and thrombolytic therapy (OR 0.03 95% CI 0.01–0.98) were found as independent predictors of mortality. Conclusion. In high-risk PE, admission APACHE II score and need for invasive mechanical ventilation may predict death in ICU. Thrombolytic therapy seems to be beneficial in these patients
    corecore