1,959 research outputs found

    Combining Tensor Networks with Monte Carlo Methods for Lattice Gauge Theories

    Full text link
    Gauged gaussian Projected Entangled Pair States are particular tensor network constructions that describe lattice states of fermionic matter interacting with dynamical gauge fields. We show how one can efficiently compute, using Monte-Carlo techniques, expectation values of physical observables in that class of states. This opens up the possibility of using tensor network techniques to investigate lattice gauge theories in two and three spatial dimensions

    AB effect and Aharonov-Susskind charge non-superselection

    Full text link
    We consider a particle in a coherent superposition of states with different electric charge moving in the vicinity of a magnetic flux. Formally, it should acquire a (gauge-dependent) AB relative phase between the charge states, even for an incomplete loop. If measureable, such a geometric, rather than topological, AB-phase would seem to break gauge invariance. Wick, Wightman and Wigner argued that since (global) charge-dependent phase transformations are physically unobservable, charge state superpositions are unphysical (`charge superselection rule'). This would resolve the apparent paradox in a trivial way. However, Aharonov and Susskind disputed this superselection rule: they distinguished between such global charge-dependent transformations, and transformations of the relative inter-charge phases of two particles, and showed that the latter \emph{could} in principle be observable! Finally, the paradox again disappears once we considers the `calibration' of the phase measured by the Aharonov-Susskind phase detectors, as well as the phase of the particle at its initial point. It turns out that such a detector can only distinguish between the relative phases of two paths if their (oriented) difference forms a loop around the flux

    Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices

    Full text link
    Can high energy physics be simulated by low-energy, non-relativistic, many-body systems, such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective, low energy, symmetry, or as an "exact" symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to new type of (table-top) experiments, that shall be used to study various QCD phenomena, as the confinement of dynamical quarks, phase transitions, and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing quantum simulation of Abelian and non-Abelian lattice gauge theories in 1+1 and 2+1 dimensions using ultracold atoms in optical lattices.Comment: A review; 55 pages, 14 figure

    Digital lattice gauge theories

    Full text link
    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2+12+1 dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3\mathbb{Z}_{3} lattice gauge theory with dynamical fermionic matter in 2+12+1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way

    Simulating 2+1d Lattice QED with dynamical matter using ultracold atoms

    Full text link
    We suggest a method to simulate lattice compact Quantum Electrodynamics (cQED) using ultracold atoms in optical lattices, which includes dynamical Dirac fermions in 2+1 dimensions. This allows to test dynamical effects of confinement as well as 2d flux loops deformations and breaking, and to observe Wilson-loop area-law.Comment: Includes supplementary material. Added references, minor modification

    Classification of Matrix Product States with a Local (Gauge) Symmetry

    Full text link
    Matrix Product States (MPS) are a particular type of one dimensional tensor network states, that have been applied to the study of numerous quantum many body problems. One of their key features is the possibility to describe and encode symmetries on the level of a single building block (tensor), and hence they provide a natural playground for the study of symmetric systems. In particular, recent works have proposed to use MPS (and higher dimensional tensor networks) for the study of systems with local symmetry that appear in the context of gauge theories. In this work we classify MPS which exhibit local invariance under arbitrary gauge groups. We study the respective tensors and their structure, revealing known constructions that follow known gauging procedures, as well as different, other types of possible gauge invariant states

    Digital quantum simulation of lattice gauge theories in three spatial dimensions

    Full text link
    In the present work, we propose a scheme for digital formulation of lattice gauge theories with dynamical fermions in 3+1 dimensions. All interactions are obtained as a stroboscopic sequence of two-body interactions with an auxiliary system. This enables quantum simulations of lattice gauge theories where the magnetic four-body interactions arising in two and more spatial dimensions are obtained without the use of perturbation theory, thus resulting in stronger interactions compared with analogue approaches. The simulation scheme is applicable to lattice gauge theories with either compact or finite gauge groups. The required bounds on the digitization errors in lattice gauge theories, due to the sequential nature of the stroboscopic time evolution, are provided. Furthermore, an implementation of a lattice gauge theory with a non-abelian gauge group, the dihedral group D3D_{3}, is proposed employing the aforementioned simulation scheme using ultracold atoms in optical lattices.Comment: 38 pages, 5 figure

    Fermionic Projected Entangled Pair States and Local U(1) Gauge Theories

    Full text link
    Tensor networks, and in particular Projected Entangled Pair States (PEPS), are a powerful tool for the study of quantum many body physics, thanks to both their built-in ability of classifying and studying symmetries, and the efficient numerical calculations they allow. In this work, we introduce a way to extend the set of symmetric PEPS in order to include local gauge invariance and investigate lattice gauge theories with fermionic matter. To this purpose, we provide as a case study and first example, the construction of a fermionic PEPS, based on Gaussian schemes, invariant under both global and local U(1) gauge transformations. The obtained states correspond to a truncated U(1) lattice gauge theory in 2 + 1 dimensions, involving both the gauge field and fermionic matter. For the global symmetry (pure fermionic) case, these PEPS can be studied in terms of spinless fermions subject to a p-wave superconducting pairing. For the local symmetry (fermions and gauge fields) case, we find confined and deconfined phases in the pure gauge limit, and we discuss the screening properties of the phases arising in the presence of dynamical matter

    Non-Abelian string breaking phenomena with Matrix Product States

    Get PDF
    Using matrix product states, we explore numerically the phenomenology of string breaking in a non-Abelian lattice gauge theory, namely 1+1 dimensional SU(2). The technique allows us to study the static potential between external heavy charges, as traditionally explored by Monte Carlo simulations, but also to simulate the real-time dynamics of both static and dynamical fermions, as the latter are fully included in the formalism. We propose a number of observables that are sensitive to the presence or breaking of the flux string, and use them to detect and characterize the phenomenon in each of these setups.Comment: 20+5 pages, 14 figures, version 2 contains more numerical results, version 3: published versio
    • …
    corecore