76 research outputs found

    Assessment of sperm quality traits in relation to fertility in boar semen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have been published where sperm plasma membrane integrity correlated to fertility. In this study we describe a simple fluorometer-based assay where we monitored the fluorescence intensity of artificially membrane-ruptured spermatozoa with a fixed time staining with fluorescent DNA dyes.</p> <p>Methods</p> <p>Membrane-impermeant fluorescent dyes Hoechst 33258 (H258) and propidium iodide (PI) were used to measure the fluorescence of the nucleus in artificially membrane ruptured spermatozoa and membrane-permeant dye Hoechst 33342 (H342) was used to measure fluorescence of intact spermatozoa. The concentration of spermatozoa in insemination doses varied from 31.2 × 10<sup>6</sup>/ml to 50 × 10<sup>6</sup>/ml and the average value was 35 × 10<sup>6</sup>/ml. Each boar was represented by three consecutive ejaculates, collected at weekly intervals. Nonreturn rate within 60 days of first insemination (NR %) and litter size (total number of piglets born) of multiparous farrowings were used as fertility measures.</p> <p>Results</p> <p>Sperm fluorescence intensity of H258 and H342, but not the fluorescence intensity of PI-stained spermatozoa correlated significantly with the litter size of multiparous farrowings, values being r = - 0.68 (P < 0.01) for H258, r = - 0.69 (P < 0.01) for H342 and r = - 0.38, (P = 0.11) for PI.</p> <p>Conclusions</p> <p>The increase in fluorescence values of membrane-ruptured H258 and unruptured H342-stained spermatozoa in boar AI doses can be associated with smaller litter size after AI. This finding indicates that the fluorescence properties of the sperm nucleus could be used to select for AI doses with greater fertilizing potential.</p

    Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model

    Get PDF
    Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART) outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus) aged 2 years (A, B and C). In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA) motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0 < 0.01) and blastocysts output (p < 0.05) compared with C. Logistic regression analysis model explained a deviance of 72% (p < 0.0001), directly related with the mean percentage of rapid spermatozoa in fresh semen (p < 0.01), semen viability after thawing (p < 0.01), and with two of the three comet parameters considered, i.e tail DNA percentage and comet length (p < 0.0001). DNA integrity alone had a high predictive value on IVF outcome with frozen/thawed semen (deviance explained: 57%). The model proposed here represents one of the many possible ways to explain differences found in embryo output following IVF with different semen donors and may represent a useful tool to select the most suitable donors for semen cryopreservation

    The effects of male age on sperm analysis by motile sperm organelle morphology examination (MSOME)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to investigate the influence of age on sperm quality, as analysed by motile sperm organelle morphology examination (MSOME).</p> <p>Methods</p> <p>Semen samples were collected from 975 men undergoing evaluation or treatment for infertility. Sperm cells were evaluated at 8400× magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. Two forms of spermatozoa were considered: normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV, defined as vacuoles occupying > 50% of the sperm nuclear area). At least 200 spermatozoa per sample were evaluated, and the percentages of normal and LNV spermatozoa were determined. The subjects were divided into three groups according to age: Group I, less than or equal to 35 years; Group II, 36-40 years; and Group III, greater than or equal to 41 years.</p> <p>Results</p> <p>There was no difference in the percentages of normal sperm between the two younger (I and II) groups (<it>P ></it>0.05). The percentage of normal sperm in the older group (III) was significantly lower than that in the younger (I and II) groups (<it>P </it>< 0.05). There was no difference in the percentage of LNV spermatozoa between the younger (I and II) groups (<it>P ></it>0.05). The percentage of LNV spermatozoa was significantly higher in the older group (III) than in the younger (I and II) groups (<it>P </it>< 0.05). Regression analysis demonstrated a significant decrease in the incidence of normal sperm with increasing age (<it>P </it>< 0.05; r = -0.10). However, there was a significant positive correlation between the percentage of spermatozoa with LNV and male age (<it>P </it>< 0.05, r = 0.10).</p> <p>Conclusion</p> <p>The results demonstrated a consistent decline in semen quality, as reflected by morphological evaluation by MSOME, with increased age. Considering the relationship between nuclear vacuoles and DNA damage, these age-related changes predict that increased paternal age should be associated with unsuccessful or abnormal pregnancy as a consequence of fertilisation with damaged spermatozoa. Given that sperm nuclear vacuoles can be evaluated more precisely at high magnification, these results support the routine use of MSOME for ICSI as a criterion for semen analysis.</p

    Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA

    Get PDF
    Human sperm DNA damage may have adverse effects on reproductive outcome. Infertile men possess substantially more spermatozoa with damaged DNA compared to fertile donors. Although the extent of this abnormality is closely related to sperm function, the underlying etiology of ensuing male infertility is still largely controversial. Both intra-testicular and post-testicular events have been postulated and different mechanisms have been proposed to explain the presence of damaged DNA in human spermatozoa. Three among them, i.e. abnormal chromatin packaging, oxidative stress and apoptosis, are the most studied and discussed in the present review. Furthermore, results from numerous investigations are presented, including our own findings on these pathological conditions, as well as the techniques applied for their evaluation. The crucial points of each methodology on the successful detection of DNA damage and their validity on the appraisal of infertile patients are also discussed. Along with the conventional parameters examined in the standard semen analysis, evaluation of damaged sperm DNA seems to complement the investigation of factors affecting male fertility and may prove an efficient diagnostic tool in the prediction of pregnancy outcome

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health

    Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring

    Get PDF

    Sperm chromatin structure and male fertility: biological and clinical aspects.

    Get PDF
    Aim: Sperm chromatin/DNA integrity is essential for the accurate transmission of paternal genetic information, and normal sperm chromatin structure is important for sperm fertilizing ability. The routine examination of semen, which includes sperm concentration, motility and morphology, does not identify defects in sperm chromatin structure. The origin of sperm DNA damage and a variety of methods for its assessment are described. Evaluation of sperm DNA damage appears to be a useful tool for assessing male fertility potential both in vivo and in vitro. The possible impact of sperm DNA defects on the offspring is also discussed.Peer reviewe
    corecore