569 research outputs found

    Anisotropic exchange and effective crystal field parameters for low dimensional systems, EPR data

    Get PDF
    We review some aspects of the electron paramagnetic resonance (EPR) studies in quasi-onedimensional inorganic compounds with special emphasis on the angular dependencies of g-factors, linewidth and the information they reveal about the physical system. In particular, we employ for the analysis of the data the method of moments and outline the expressions for the second and the fourth moments which is related to different spin-spin interactions

    Anisotropy of the paramagnetic susceptibility in LaTiO3_{3}: The electron-distribution picture in the ground state

    Full text link
    The energy-level scheme and wave functions of the titanium ions in LaTiO3_{3} are calculated using crystal-field theory and spin-orbit coupling. The theoretically derived temperature dependence and anisotropy of the magnetic susceptibility agree well with experimental data obtained in an untwinned single crystal. The refined fitting procedure reveals an almost isotropic molecular field and a temperature dependence of the van Vleck susceptibility. The charge distribution of the 3d--electron on the Ti positions and the principle values of the quadrupole moments are derived and agree with NMR data and recent measurements of orbital momentum and crystal-field splitting. The low value of the ordered moment in the antiferromagnetic phase is discussed.Comment: 6 pages, 2 figures, 3 table

    Anisotropic Exchange in LiCuVO4_4 probed by ESR

    Full text link
    We investigated the paramagnetic resonance in single crystals of LiCuVO4_4 with special attention to the angular variation of the absorption spectrum. To explain the large resonance linewidth of the order of 1 kOe, we analyzed the anisotropic exchange interaction in the chains of edge-sharing CuO6_6 octahedra, taking into account the ring-exchange geometry of the nearest-neighbor coupling via two symmetric rectangular Cu-O bonds. The exchange parameters, which can be estimated from theoretical considerations, nicely agree with the parameters obtained from the angular dependence of the linewidth. The anisotropy of this magnetic ring exchange is found to be much larger than it is usually expected from conventional estimations which neglect the bonding geometry. Hence, the data yield the evidence that in copper oxides with edge-sharing structures the role of the orbital degrees of freedom is strongly enhanced. These findings establish LiCuVO4_4 as one-dimensional compound at high temperatures. PACS: 76.30.-v, 76.30.Fc, 75.30.EtComment: 18 pages, 6 figure

    Electron spin resonance and exchange paths in the orthorhombic dimer system Sr2VO4

    Full text link
    We report on magnetization and electron spin resonance (ESR) measurements of Sr2_{2}VO4_4 with orthorhombic symmetry. In this dimer system the V4+V^{4+} ions are in tetrahedral environment and are coupled by an antiferromagnetic intra-dimer exchange constant J/kBJ/k_B \approx 100 K to form a singlet ground state without any phase transitions between room temperature and 2 K. Based on an extended-H\"{u}ckel-Tight-Binding analysis we identify the strongest exchange interaction to occur between two inequivalent vanadium sites via two intermediate oxygen ions. The ESR absorption spectra can be well described by a single Lorentzian line with an effective g-factor gg = 1.89. The temperature dependence of the ESR intensity is well described by a dimer model in agreement with the magnetization data. The temperature dependence of the ESR linewidth can be modeled by a superposition of a linear increase with temperature with a slope α\alpha = 1.35 Oe/K and a thermally activated behavior with an activation energy Δ/kB\Delta/k_B = 1418 K, both of which point to spin-phonon coupling as the dominant relaxation mechanism in this compound.Comment: 5 pages, 4 figure

    Spin correlations and Dzyaloshinskii-Moriya interaction in Cs2_2CuCl4_4

    Full text link
    We report on electron spin resonance (ESR) studies of the spin relaxation in Cs2_2CuCl4_4. The main source of the ESR linewidth at temperatures T150T \leq 150 K is attributed to the uniform Dzyaloshinskii-Moriya interaction. The vector components of the Dzyaloshinskii-Moriya interaction are determined from the angular dependence of the ESR spectra using a high-temperature approximation. Both the angular and temperature dependence of the ESR linewidth have been analyzed using a self-consistent quantum-mechanical approach. In addition analytical expressions based on a quasi-classical picture for spin fluctuations are derived, which show good agreement with the quantum-approach for temperatures T2J/kB15T \geq 2J/k_{\rm B} \approx 15 K. A small modulation of the ESR linewidth observed in the acac-plane is attributed to the anisotropic Zeeman interaction, which reflects the two magnetically nonequivalent Cu positions

    Detection of Fusobacterium spp in colorectal tissue samples using reverse transcription polymerase chain reaction with minor groove binder probes: an exploratory research

    Get PDF
    An unhealthy microbiome is intimately correlated with several disease states, including colorectal cancer, wherein bacteria might be the key to neoplastic initiation and progression. Recent studies revealed an enrichment of Fusobacterium in colorectal tumor tissues relative to surrounding normal mucosa. Given the available evidence, we conducted an exploratory study quantifying the relative expression of Fusobacterium spp in 28 tissue samples from patients treated at Centro Hospitalar de São João belonging to 4 different groups: adenomas, paired normal tissue from patients with adenomas, carcinomas, and paired normal tissue from patients with colorectal carcinomas. To increase reverse transcription polymerase chain reaction quantification sensitivity, minor groove binders fluorescent probes were used, having in mind its implementation into routine clinical practice. Differences of Fusobacterium spp relative abundance between paired neoplastic lesions/normal tissue were examined by Wilcoxon signed-rank test and for all the other 2-group comparisons the Mann-Whitney U test was used. Most of the adenomas studied belonged to clinical specimens showing either tubular or villous low-grade dysplasia and an enrichment of Fusobacterium relative to paired normal tissue was not found (P = .180). In the carcinoma group, 57% of samples displayed a positive status for this bacterium with the highest burden of detectable Fusobacterium belonging to a specimen with positive regional lymph node metastasis. This is the first Portuguese study confirming a trend toward an overabundance of Fusobacterium in colorectal carcinomas compared to adenomas and paired samples of normal-looking mucosa, in keeping with the role of this bacterium in colorectal carcinogenesis. Further studies are needed to elucidate the relevance of Fusobacterium detection for the prevention and treatment of colorectal cancer

    Structural, thermodynamic, and local probe investigations of a honeycomb material Ag3_{3}LiMn2_{2}O6_{6}

    Full text link
    The system Ag[Li1/3_{1/3}Mn2/3_{2/3}]O2_{2} belongs to a quaternary 3R-delafossite family and crystallizes in a monoclinic symmetry with space group C2/mC\,2/m and the magnetic Mn4+^{4+}(S=3/2S=3/2) ions form a honeycomb network in the abab-plane. An anomaly around 50 K and the presence of antiferromagnetic (AFM) coupling (Curie-Weiss temperature θCW51\theta_{CW}\sim-51 K) were inferred from our magnetic susceptibility data. The magnetic specific heat clearly manifests the onset of magnetic ordering in the vicinity of 48\,K and the recovered magnetic entropy, above the ordering temperature, falls short of the expected value, implying the presence of short-range magnetic correlations. The (ESR) line broadening on approaching the ordering temperature TNT_{{\rm N}} could be described in terms of a Berezinski-Kosterlitz-Thouless (BKT) scenario with TKT=40(1)T_{{\rm KT}}=40(1) K. 7^{7}Li NMR line-shift probed as a function of temperature tracks the static susceptibility (Kiso_{iso}) of magnetically coupled Mn4+^{4+} ions. The 7^{7}Li spin-lattice relaxation rate (1/TT1_{1}) exhibits a sharp decrease below about 50 K. Combining our bulk and local probe measurements, we establish the presence of an ordered ground state for the honeycomb system Ag3_{3}LiMn2_{2}O6_{6}.Our ab-initio electronic structure calculations suggest that in the abab-plane, the nearest neighbor (NN) exchange interaction is strong and AFM, while the next NN and the third NN exchange interactions are FM and AFM respectively. In the absence of any frustration the system is expected to exhibit long-range, AFM order, in agreement with experiment.Comment: 11 pages, 13 figures, accepted in Phys Rev
    corecore