681 research outputs found

    Network patterns and strength of orbital currents in layered cuprates

    Full text link
    In a frame of the tJGt-J-G model we derive the microscopical expression for the circulating orbital currents in layered cuprates using the anomalous correlation functions. In agreement with μ\mu-on spin relaxation (μ\muSR), nuclear quadrupolar resonance (NQR) and inelastic neutron scattering(INS) experiments in YBa2_2Cu3_3O6+x_{6+x} we successfully explain the order of magnitude and the monotonous increase of the {\it internal} magnetic fields resulting from these currents upon cooling. However, the jump in the intensity of the magnetic fields at Tc_c reported recently seems to indicate a non-mean-field feature in the coexistence of current and superconducting states and the deviation of the extended charge density wave vector instability from its commensurate value {\bf Q}(π,π\approx(\pi,\pi) in accordance with the reported topology of the Fermi surface

    Dynamical charge susceptibility in layered cuprates: the influence of screened inter-site Coulomb repulsion

    Full text link
    The analytical expression for dynamical charge susceptibility in layered cuprates has been derived in the frame of singlet-correlated band model beyond random-phase-approximation (RPA) scheme. Our calculations performed near optimal doping regime show that there is a peak in real part of the charge susceptibility χ(q,ω)\chi({\bf q},\omega) at {\bf Q} = (π\pi, π\pi) at strong enough inter-site Coulomb repulsion. Together with the strong maximum in the Im χ(Q,ω)\chi({\bf Q},\omega) at 15 meV it confirms the formation of low-energetic plasmons or charge fluctuations. This provides a jsutification that these excitations are important and together with a spin flcutuations can contribute to the Cooper pairing in layered cuprates. Analysing the charge susceptibilitiy with respect to an instability we obtain a new plasmon branch, ωq\omega_{\bf q}, along the Brillouin Zone. In particular, we have found that it goes to zero near {\bf Q}CDW(2π/3,2π/3)_{CDW} \approx (2\pi/3, 2\pi/3)

    Theory of magnetic excitons in the heavy-fermion superconductor UPd2Al3UPd_{2}Al_{3}

    Full text link
    We analyze the influence of unconventional superconductivity on the magnetic excitations in the heavy fermion compound UPd2_2Al3_3. We show that it leads to the formation of a bound state at energies well below 2Δ0\Delta_0 at the antiferromagnetic wave vector {\textbf Q}=(0,0,π/c)(0,0,\pi/c). Its signature is a resonance peak in the spectrum of magnetic excitations in good agreement with results from inelastic neutron scattering. Furthermore we investigate the influence of antiferromagnetic order on the formation of the resonance peak. We find that its intensity is enhanced due to intraband transitions induced by the reconstruction of Fermi surface sheets. We determine the dispersion of the resonance peak near {\textbf Q} and show that it is dominated by the magnetic exciton dispersion associated with local moments. We demonstrate by a microscopic calculation that UPd2_2Al3_3 is another example in which the unconventional nature of the superconducting order parameter can be probed by means of inelastic neutron scattering and determined unambiguously.Comment: 6 pages, 4 figure

    Gap Structure of the Spin-Triplet Superconductor Sr2RuO4 Determined from the Field-Orientation Dependence of Specific Heat

    Get PDF
    We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of states reflecting the superconducting gap structure have been resolved for the first time. We also obtained strong evidence of multi-band superconductivity and concluded that the superconducting gap in the active band, responsible for the superconducting instability, is modulated with a minimum along the [100] direction.Comment: 4 pages, 4 figure

    Kinetic exchange at low charge transfer energies

    Get PDF
    Specific features of kinetic exchange at low charge transfer energies are analysed. It is shown that the exchange may be of ferromagnetic type. The examples of Cu2+-Mn2+ and Ni2+-Mn2+ doping pairs in perovskite-type crystals are considered. The theoretical predictions agree with the experimental data

    Interference of superexchange interactions

    Get PDF
    New superexchange four-particle mechanisms are suggested for dielectrics containing magnetic ions linked through several bridge ligands. These mechanisms may suppress as well as amplify Anderson's superexchange which is additive over the ligands

    Orbital ordering in charge transfer insulators

    Get PDF
    We discuss a new mechanism of orbital ordering, which in charge transfer insulators is more important than the usual exchange interactions and which can make the very type of the ground state of a charge transfer insulator, i.e. its orbital and magnetic ordering, different from that of a Mott-Hubbard insulator. This purely electronic mechanism allows us to explain why orbitals in Jahn-Teller materials typically order at higher temperatures than spins, and to understand the type of orbital ordering in a number of materials, e.g. K_2CuF_4, without invoking the electron-lattice interaction.Comment: 4 pages, 2 figure

    Sub-gap optical response across the structural phase transition in van der Waals layered \alpha-RuCl3_3

    Get PDF
    We report magnetic, thermodynamic, thermal expansion, and on detailed optical experiments on the layered compound α\alpha-RuCl3_3 focusing on the THz and sub-gap optical response across the structural phase transition from the monoclinic high-temperature to the rhombohedral low-temperature structure, where the stacking sequence of the molecular layers is changed. This type of phase transition is characteristic for a variety of tri-halides crystallizing in a layered honeycomb-type structure and so far is unique, as the low-temperature phase exhibits the higher symmetry. One motivation is to unravel the microscopic nature of spin-orbital excitations via a study of temperature and symmetry-induced changes. We document a number of highly unusual findings: A characteristic two-step hysteresis of the structural phase transition, accompanied by a dramatic change of the reflectivity. An electronic excitation, which appears in a narrow temperature range just across the structural phase transition, and a complex dielectric loss spectrum in the THz regime, which could indicate remnants of Kitaev physics. Despite significant symmetry changes across the monoclinic to rhombohedral phase transition, phonon eigenfrequencies and the majority of spin-orbital excitations are not strongly influenced. Obviously, the symmetry of the single molecular layers determine the eigenfrequencies of most of these excitations. Finally, from this combined terahertz, far- and mid-infrared study we try to shed some light on the so far unsolved low energy (< 1eV) electronic structure of the ruthenium 4d54d^5 electrons in α\alpha-RuCl3_3.Comment: 22 pages, 9 figure
    corecore