852 research outputs found

    On the "spin-freezing" mechanism in underdoped superconducting cuprates

    Full text link
    The letter deals with the spin-freezing process observed by means of NMR-NQR relaxation or by muon spin rotation in underdoped cuprate superconductors. This phenomenon, sometimes referred as coexistence of antiferromagnetic and superconducting order parameters, is generally thought to result from randomly distributed magnetic moments related to charge inhomogeneities (possibly stripes) which exhibit slowing down of their fluctuations on cooling below Tc_c . Instead, we describe the experimental findings as due to fluctuating, vortex-antivortex, orbital currents state coexisting with d-wave superconducting state. A direct explanation of the experimental results, in underdoped Y1−x_{1-x}Cax_xBa2_2Cu3_3O6.1_{6.1} and La2−x_{2-x}Sr%_xCuO4_4, is thus given in terms of freezing of orbital current fluctuations

    Magnetic degeneracy and hidden metallicity of the spin density wave state in ferropnictides

    Get PDF
    We analyze spin density wave (SDW) order in iron-based superconductors and electronic structure in the SDW phase. We consider an itinerant model for Fe-pnictides with two hole bands centered at (0,0)(0,0) and two electron bands centered at (0,π)(0,\pi) and (π,0)(\pi,0) in the unfolded BZ. A SDW order in such a model is generally a combination of two components with momenta (0,π)(0,\pi) and (π,0)(\pi,0), both yield (π,π)(\pi,\pi) order in the folded zone. Neutron experiments, however, indicate that only one component is present. We show that (0,π)(0,\pi) or (π,0)(\pi,0) order is selected if we assume that only one hole band is involved in the SDW mixing with electron bands. A SDW order in such 3-band model is highly degenerate for a perfect nesting and hole-electron interaction only, but we show that ellipticity of electron pockets and interactions between electron bands break the degeneracy and favor the desired (0,π)(0,\pi) or (π,0)(\pi,0) order. We further show that stripe-ordered system remains a metal for arbitrary coupling. We analyze electronic structure for parameters relevant to the pnictides and argue that the resulting electronic structure is in good agreement with ARPES experiments. We discuss the differences between our model and J1−J2J_1-J_2 model of localized spins.Comment: reference list updated, typos are correcte

    Dynamical charge susceptibility in layered cuprates: the influence of screened inter-site Coulomb repulsion

    Full text link
    The analytical expression for dynamical charge susceptibility in layered cuprates has been derived in the frame of singlet-correlated band model beyond random-phase-approximation (RPA) scheme. Our calculations performed near optimal doping regime show that there is a peak in real part of the charge susceptibility χ(q,ω)\chi({\bf q},\omega) at {\bf Q} = (π\pi, π\pi) at strong enough inter-site Coulomb repulsion. Together with the strong maximum in the Im χ(Q,ω)\chi({\bf Q},\omega) at 15 meV it confirms the formation of low-energetic plasmons or charge fluctuations. This provides a jsutification that these excitations are important and together with a spin flcutuations can contribute to the Cooper pairing in layered cuprates. Analysing the charge susceptibilitiy with respect to an instability we obtain a new plasmon branch, ωq\omega_{\bf q}, along the Brillouin Zone. In particular, we have found that it goes to zero near {\bf Q}CDW≈(2π/3,2π/3)_{CDW} \approx (2\pi/3, 2\pi/3)

    Polaron Effects on Superexchange Interaction: Isotope Shifts of TNT_N, TCT_C, and T∗T^* in Layered Copper Oxides

    Full text link
    A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate anions with regard to polaron effects at both magnetic ions and intermediate anions. This expression is used to analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates: the Neel temperatures (TNT_N), critical temperatures of transitions to a superconducting state (TCT_C), and characteristic temperatures of the pseudogap in the normal state (T∗T^*).Comment: 4 pages, 1 figur

    Theory of magnetic excitons in the heavy-fermion superconductor UPd2Al3UPd_{2}Al_{3}

    Full text link
    We analyze the influence of unconventional superconductivity on the magnetic excitations in the heavy fermion compound UPd2_2Al3_3. We show that it leads to the formation of a bound state at energies well below 2Δ0\Delta_0 at the antiferromagnetic wave vector {\textbf Q}=(0,0,π/c)(0,0,\pi/c). Its signature is a resonance peak in the spectrum of magnetic excitations in good agreement with results from inelastic neutron scattering. Furthermore we investigate the influence of antiferromagnetic order on the formation of the resonance peak. We find that its intensity is enhanced due to intraband transitions induced by the reconstruction of Fermi surface sheets. We determine the dispersion of the resonance peak near {\textbf Q} and show that it is dominated by the magnetic exciton dispersion associated with local moments. We demonstrate by a microscopic calculation that UPd2_2Al3_3 is another example in which the unconventional nature of the superconducting order parameter can be probed by means of inelastic neutron scattering and determined unambiguously.Comment: 6 pages, 4 figure

    Si detectors for Time of Flight Measurements at the Super-FRS

    Get PDF

    Stable compounds in the CaO-Al2O3 system at high pressures

    Full text link
    Using evolutionary crystal structure prediction algorithm USPEX, we showed that at pressures of the Earth's lower mantle CaAl2O4 is the only stable calcium aluminate. At pressures above 7.0 GPa it has the CaFe2O4-type structure and space group Pnma. This phase is one of prime candidate aluminous phases in the lower mantle of the Earth. We show that at low pressures 5CaO * 3Al2O3 (C5A3) with space group Cmc21, CaAl4O7 (C2/c) and CaAl2O4 (P21/m) structures are stable at pressures of up to 2.1, 1.8 and 7.0 GPa respectively. The previously unknown structure of the orthorhombic 'CA-III' phase is also found from our calculations. This phase is metastable and has a layered structure with space group P21212

    Probing the Yb3+^{3+} spin relaxation in Y0.98_{0.98}Yb0.02_{0.02}Ba2_{2}Cu3_{3}Ox_{x} by Electron Paramagnetic Resonance

    Full text link
    The relaxation of Yb3+^{3+} in YBa2_{2}Cu3_{3}Ox_{x} (6<x<76<x<7) was studied using Electron Paramagnetic Resonance (EPR). It was found that both electronic and phononic processes contribute to the Yb3+^{3+} relaxation. The phononic part of the relaxation has an exponential temperature dependence, which can be explained by a Raman process via the coupling to high-energy (∼\sim500 K) optical phonons or an Orbach-like process via the excited vibronic levels of the Cu2+^{2+} ions (localized Slonczewski-modes). In a sample with a maximum oxygen doping xx=6.98, the electronic part of the relaxation follows a Korringa law in the normal state and strongly decreases below TcT_{c}. Comparison of the samples with and without Zn doping proved that the superconducting gap opening is responsible for the sharp decrease of Yb3+^{3+} relaxation in YBa2_{2}Cu3_{3}O6.98_{6.98}. It was shown that the electronic part of the Yb3+^{3+} relaxation in the superconducting state follows the same temperature dependence as 63^{63}Cu and 17^{17}O nuclear relaxations despite the huge difference between the corresponding electronic and nuclear relaxation rates.Comment: 8 pages, 6 figure

    Incommensurate itinerant antiferromagnetic excitations and spin resonance in the FeTe0.6_{0.6}Se0.4_{0.4} superconductor

    Full text link
    We report on inelastic neutron scattering measurements that find incommensurate itinerant like magnetic excitations in the normal state of superconducting FeTe0.6_{0.6}Se0.4_{0.4} (\Tc=14K) at wave-vector Qinc=(1/2±ϵ,1/2∓ϵ)\mathbf{Q}_{inc}=(1/2\pm\epsilon,1/2\mp\epsilon) with ϵ\epsilon=0.09(1). In the superconducting state only the lower energy part of the spectrum shows significant changes by the formation of a gap and a magnetic resonance that follows the dispersion of the normal state excitations. We use a four band model to describe the Fermi surface topology of iron-based superconductors with the extended s(±)s(\pm) symmetry and find that it qualitatively captures the salient features of these data.Comment: 7 pages and 5 figure
    • …
    corecore