2,168 research outputs found

    On the "spin-freezing" mechanism in underdoped superconducting cuprates

    Full text link
    The letter deals with the spin-freezing process observed by means of NMR-NQR relaxation or by muon spin rotation in underdoped cuprate superconductors. This phenomenon, sometimes referred as coexistence of antiferromagnetic and superconducting order parameters, is generally thought to result from randomly distributed magnetic moments related to charge inhomogeneities (possibly stripes) which exhibit slowing down of their fluctuations on cooling below Tc_c . Instead, we describe the experimental findings as due to fluctuating, vortex-antivortex, orbital currents state coexisting with d-wave superconducting state. A direct explanation of the experimental results, in underdoped Y1x_{1-x}Cax_xBa2_2Cu3_3O6.1_{6.1} and La2x_{2-x}Sr%_xCuO4_4, is thus given in terms of freezing of orbital current fluctuations

    Network patterns and strength of orbital currents in layered cuprates

    Full text link
    In a frame of the tJGt-J-G model we derive the microscopical expression for the circulating orbital currents in layered cuprates using the anomalous correlation functions. In agreement with μ\mu-on spin relaxation (μ\muSR), nuclear quadrupolar resonance (NQR) and inelastic neutron scattering(INS) experiments in YBa2_2Cu3_3O6+x_{6+x} we successfully explain the order of magnitude and the monotonous increase of the {\it internal} magnetic fields resulting from these currents upon cooling. However, the jump in the intensity of the magnetic fields at Tc_c reported recently seems to indicate a non-mean-field feature in the coexistence of current and superconducting states and the deviation of the extended charge density wave vector instability from its commensurate value {\bf Q}(π,π\approx(\pi,\pi) in accordance with the reported topology of the Fermi surface

    Quasiparticle interference in iron-based superconductors

    Full text link
    We systematically calculate quasiparticle interference (QPI) signatures for the whole phase diagram of iron-based superconductors. Impurities inherent in the sample together with ordered phases lead to distinct features in the QPI images that are believed to be measured in spectroscopic imaging-scanning tunneling microscopy (SI-STM). In the spin-density wave phase the rotational symmetry of the electronic structure is broken, signatures of which are also seen in the coexistence regime with both superconducting and magnetic order. In the superconducting regime we show how the different scattering behavior for magnetic and non-magnetic impurities allows to verify the s+s^{+-} symmetry of the order parameter. The effect of possible gap minima or nodes is discussed.Comment: 19 pages, 7 figure

    Angular resolved specific heat in iron-based superconductors: the case for nodeless extended ss-wave gap

    Full text link
    We consider the variation of the field-induced component of the specific heat C(H)C({\bf H}) with the direction of the applied field in FeFe-pnictides within quasi-classical Doppler-shift approximation, with special emphasis to recent experiments on FeSe0.4_{0.4}Te0.6_{0.6} [Zheng et al., arXiv:1004.2236]. We show that for extended ss-wave gap with no nodes, C(H)C({\bf H}) has cos4ϕ\cos 4 \phi component, where ϕ\phi is the angle between H{\bf H} and the direction between hole and electron Fermi surfaces. The maxima of C(H)C({\bf H}) are at π/4\pi/4, 3π/43\pi/4, etc. if the applied field is smaller than H01TH_0 \leq 1T, and at ϕ=0,π/2\phi =0, \pi/2, etc. if the applied field is larger than H0H_0. The angle-dependence of C(H)C({\bf H}), the positions of the maxima, and the relative magnitude of the oscillating component are consistent with the experiments performed in the field of 9T>>H09T >> H_0. We show that the observed cos4ϕ\cos 4 \phi variation does not hold if the ss-wave gap has accidental nodes along the two electron Fermi surfaces.Comment: 5 pages, 4 figure

    Quasiparticle interference from different impurities on the surface of pyrochlore iridates: signatures of the Weyl phase

    Full text link
    Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even number of points in the bulk Brillouin zone. These semimetals exhibit topologically protected surface Fermi arcs, which pairwise connect the projected bulk band touchings in the surface Brillouin zone. Here, we analyze the quasiparticle interference patterns of the Weyl phase when time-reversal symmetry is explicitly broken. We use a multi-band dd-electron Hubbard Hamiltonian on a pyrochlore lattice, relevant for the pyrochlore iridate R2_2Ir2_2O7_7 (where R is a rare earth). Using exact diagonalization, we compute the surface spectrum and quasiparticle interference (QPI) patterns for various surface terminations and impurities. We show that the spin and orbital texture of the surface states can be inferred from the absence of certain backscattering processes and from the symmetries of the QPI features for non-magnetic and magnetic impurities. Furthermore, we show that the QPI patterns of the Weyl phase in pyrochlore iridates may exhibit additional interesting features that go beyond those found previously in TaAs.Comment: 15 pages, 16 figure

    Temperature Dependence of the Cu(2) NQR Line Width in YBa2_2Cu3_3O7y_{7-y}

    Full text link
    Systematic measurements of the 63^{63}Cu(2) NQR line width were performed in underdoped YBa2_2Cu3_3O7y_{7-y} samples over the temperature range 4.2 K <T<300<T<300 K. It was shown that the copper NQR line width monotonically increases upon lowering temperature in the below-critical region, resembling temperature behavior of the superconducting gap. The observed dependence is explained by the fact that the energy of a condensate of sliding charge-current states of the charge-density-wave type depends on the phase of order parameter. Calculations show that this dependence appears only at T<TcT<T_c. Quantitative estimates of the line broadening at T<TcT<T_c agree with the measurement results.Comment: 4 pages, 2 figure

    Content and guarantees of implementation the right to local self-government in the Russian Federation

    Get PDF
    This article covers the issue of the complex autonomous right, i.e. the right to local self-government and guaranty of its implementation. For the purposes of this paper the authors studied various theoretical approaches, legal and regulatory issues, practices of implementing the rights in the Russian Federation. It was founded that the right to local self-government is a complex and interconnected structure with several essential components (legal rights): right of a local community (population) for local self-governance, individual citizens’ rights, the members of this community, to participate in realizing self-governance and rights of the local authorities to exercise public power (local self-governance). In the result of this research the authors gave general definition and disclosed the content of the following terms: “citizen’s right to self-government”, and “citizen’s right to participate in realizing self-governance”. Constitutional right to self-government is just an integral part, a link in the system of rights and freedoms; due to this, we can consider this right as the unity with other rights. The guaranty of implementation of the right to self-government on the one hand gave better understanding of the problems of legislation concerning self-government and its improvement; on the other hand it helps to evaluate the conditions under which the citizens and municipal authorities carry out their activity. State and municipal guarantees are the part of the entire mechanism of implementation of the citizens’ right on self-government. They objectively exist and fulfil an important function protecting the rights of the population for self-government.peer-reviewe
    corecore