49 research outputs found

    Trends in the development of composite reinforced concrete structures of pedestrian aboveground overpasses

    Get PDF
    Pedestrian bridges are an important part of the urban infrastructure that ensures the safety and comfort of pedestrians. They have a number of distinctive features compared to road bridges. Also, the pedestrian load itself has a significant dynamic component, which can lead to the occurrence of resonant phenomena. Composite reinforced concrete bridges are widely used among the road bridges. This is due to the possibility of including the roadway structure in the act, which increases the load-bearing capacity and reliability of the structure. The same advantages are typical for pedestrian aboveground overpasses. However, pedestrian bridges have a number of features that affect the operation of the composite reinforced concrete structure. It is well-known that the difference between bending structures in civil construction and bending structures in bridge and road construction is the ratio of the rigidness of the concrete and steel parts. The load on pedestrian aboveground overpasses is similar to the temporary load in civil buildings, adjusted for a large dynamic component. But at the same time, the spans of pedestrian aboveground overpasses are similar to the spans of road bridges. In this article, the prospects for the development of composite reinforced concrete structures of pedestrian overpasses are reviewed

    Trends in the development of composite reinforced concrete structures of pedestrian aboveground overpasses

    No full text
    Pedestrian bridges are an important part of the urban infrastructure that ensures the safety and comfort of pedestrians. They have a number of distinctive features compared to road bridges. Also, the pedestrian load itself has a significant dynamic component, which can lead to the occurrence of resonant phenomena. Composite reinforced concrete bridges are widely used among the road bridges. This is due to the possibility of including the roadway structure in the act, which increases the load-bearing capacity and reliability of the structure. The same advantages are typical for pedestrian aboveground overpasses. However, pedestrian bridges have a number of features that affect the operation of the composite reinforced concrete structure. It is well-known that the difference between bending structures in civil construction and bending structures in bridge and road construction is the ratio of the rigidness of the concrete and steel parts. The load on pedestrian aboveground overpasses is similar to the temporary load in civil buildings, adjusted for a large dynamic component. But at the same time, the spans of pedestrian aboveground overpasses are similar to the spans of road bridges. In this article, the prospects for the development of composite reinforced concrete structures of pedestrian overpasses are reviewed

    Geochemical and biogeochemical parameters of Black Sea waters and suspended matter

    No full text
    The monograph focuses on the analysis of data addressing the problem of H2S contamination and oxic-anoxic interface in the Black Sea. Regularities of the fine structure of vertical distribution of oxygen, hydrogen sulfide, biogenic elements, organic substances, suspended matter, and metals of the iron-manganese group in the area of contact of aerobic and anaerobic waters have been revealed. Also effects of biochemical, physico-chemical and dynamic processes on their vertical distribution have been examined. Sulfate reduction in seawater and bottom sediments has been studied. Quantitative estimates of H2S fluxes at the water - bottom sediment and O2-H2S interfaces have been done. Features of H2S oxidation have been studied, its budget in the Black Sea has been calculated. Multiyear spatial-temporal variability of the oxic-anoxic interface has been investigated
    corecore