727 research outputs found
Zooming in on local level statistics by supersymmetric extension of free probability
We consider unitary ensembles of Hermitian NxN matrices H with a confining
potential NV where V is analytic and uniformly convex. From work by
Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit
of the characteristic function for a finite-rank Fourier variable K is
determined by the Voiculescu R-transform, a key object in free probability
theory. Going beyond these results, we argue that the same holds true when the
finite-rank operator K has the form that is required by the Wegner-Efetov
supersymmetry method of integration over commuting and anti-commuting
variables. This insight leads to a potent new technique for the study of local
statistics, e.g., level correlations. We illustrate the new technique by
demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section
Synchronization in Complex Systems Following the Decision Based Queuing Process: The Rhythmic Applause as a Test Case
Living communities can be considered as complex systems, thus a fertile
ground for studies related to their statistics and dynamics. In this study we
revisit the case of the rhythmic applause by utilizing the model proposed by
V\'azquez et al. [A. V\'azquez et al., Phys. Rev. E 73, 036127 (2006)]
augmented with two contradicted {\it driving forces}, namely: {\it
Individuality} and {\it Companionship}. To that extend, after performing
computer simulations with a large number of oscillators we propose an
explanation on the following open questions (a) why synchronization occurs
suddenly, and b) why synchronization is observed when the clapping period
() is ( is the mean self period
of the spectators) and is lost after a time. Moreover, based on the model, a
weak preferential attachment principle is proposed which can produce complex
networks obeying power law in the distribution of number edges per node with
exponent greater than 3.Comment: 16 pages, 5 figure
On Eigenvalues of the sum of two random projections
We study the behavior of eigenvalues of matrix P_N + Q_N where P_N and Q_N
are two N -by-N random orthogonal projections. We relate the joint eigenvalue
distribution of this matrix to the Jacobi matrix ensemble and establish the
universal behavior of eigenvalues for large N. The limiting local behavior of
eigenvalues is governed by the sine kernel in the bulk and by either the Bessel
or the Airy kernel at the edge depending on parameters. We also study an
exceptional case when the local behavior of eigenvalues of P_N + Q_N is not
universal in the usual sense.Comment: 14 page
Search in weighted complex networks
We study trade-offs presented by local search algorithms in complex networks
which are heterogeneous in edge weights and node degree. We show that search
based on a network measure, local betweenness centrality (LBC), utilizes the
heterogeneity of both node degrees and edge weights to perform the best in
scale-free weighted networks. The search based on LBC is universal and performs
well in a large class of complex networks.Comment: 14 pages, 5 figures, 4 tables, minor changes, added a referenc
On vertex coloring without monochromatic triangles
We study a certain relaxation of the classic vertex coloring problem, namely,
a coloring of vertices of undirected, simple graphs, such that there are no
monochromatic triangles. We give the first classification of the problem in
terms of classic and parametrized algorithms. Several computational complexity
results are also presented, which improve on the previous results found in the
literature. We propose the new structural parameter for undirected, simple
graphs -- the triangle-free chromatic number . We bound by
other known structural parameters. We also present two classes of graphs with
interesting coloring properties, that play pivotal role in proving useful
observation about our problem. We give/ask several conjectures/questions
throughout this paper to encourage new research in the area of graph coloring.Comment: Extended abstrac
Complex Networks on Hyperbolic Surfaces
We explore a novel method to generate and characterize complex networks by
means of their embedding on hyperbolic surfaces. Evolution through local
elementary moves allows the exploration of the ensemble of networks which share
common embeddings and consequently share similar hierarchical properties. This
method provides a new perspective to classify network-complexity both on local
and global scale. We demonstrate by means of several examples that there is a
strong relation between the network properties and the embedding surface.Comment: 8 Pages 3 Figure
Spectral Theory of Sparse Non-Hermitian Random Matrices
Sparse non-Hermitian random matrices arise in the study of disordered
physical systems with asymmetric local interactions, and have applications
ranging from neural networks to ecosystem dynamics. The spectral
characteristics of these matrices provide crucial information on system
stability and susceptibility, however, their study is greatly complicated by
the twin challenges of a lack of symmetry and a sparse interaction structure.
In this review we provide a concise and systematic introduction to the main
tools and results in this field. We show how the spectra of sparse
non-Hermitian matrices can be computed via an analogy with infinite dimensional
operators obeying certain recursion relations. With reference to three
illustrative examples --- adjacency matrices of regular oriented graphs,
adjacency matrices of oriented Erd\H{o}s-R\'{e}nyi graphs, and adjacency
matrices of weighted oriented Erd\H{o}s-R\'{e}nyi graphs --- we demonstrate the
use of these methods to obtain both analytic and numerical results for the
spectrum, the spectral distribution, the location of outlier eigenvalues, and
the statistical properties of eigenvectors.Comment: 60 pages, 10 figure
Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions
We investigate the dynamics of two agent based models of language
competition. In the first model, each individual can be in one of two possible
states, either using language or language , while the second model
incorporates a third state XY, representing individuals that use both languages
(bilinguals). We analyze the models on complex networks and two-dimensional
square lattices by analytical and numerical methods, and show that they exhibit
a transition from one-language dominance to language coexistence. We find that
the coexistence of languages is more difficult to maintain in the Bilinguals
model, where the presence of bilinguals in use facilitates the ultimate
dominance of one of the two languages. A stability analysis reveals that the
coexistence is more unlikely to happen in poorly-connected than in fully
connected networks, and that the dominance of only one language is enhanced as
the connectivity decreases. This dominance effect is even stronger in a
two-dimensional space, where domain coarsening tends to drive the system
towards language consensus.Comment: 30 pages, 11 figure
- …