15,588 research outputs found
Performance of the CMS Pixel Detector at an upgraded LHC
The CMS experiment will include a pixel detector for pattern recognition and
vertexing. It will consist of three barrel layers and two endcaps on each side,
providing three space-points up to a pseudoraditity of 2.1. Taking into account
the expected limitations of its performance in the LHC environment an 8-9 layer
pixel detector for an upgraded LHC is discussed.Comment: Contribution to the 10th European Symposium on Semiconductor
Detectors, June 12 - 16, 2005 in Wildbad Kreuth, Germany. 6 pages, 4 figures,
1 table. Referee's comments implemente
Building CMS Pixel Barrel Detectur Modules
For the barrel part of the CMS pixel tracker about 800 silicon pixel detector
modules are required. The modules are bump bonded, assembled and tested at the
Paul Scherrer Institute. This article describes the experience acquired during
the assembly of the first ~200 modules.Comment: 5 pages, 7 figures, Vertex200
A Development Environment for Visual Physics Analysis
The Visual Physics Analysis (VISPA) project integrates different aspects of
physics analyses into a graphical development environment. It addresses the
typical development cycle of (re-)designing, executing and verifying an
analysis. The project provides an extendable plug-in mechanism and includes
plug-ins for designing the analysis flow, for running the analysis on batch
systems, and for browsing the data content. The corresponding plug-ins are
based on an object-oriented toolkit for modular data analysis. We introduce the
main concepts of the project, describe the technical realization and
demonstrate the functionality in example applications
When it Pays to Rush: Interpreting Morphogen Gradients Prior to Steady-State
During development, morphogen gradients precisely determine the position of
gene expression boundaries despite the inevitable presence of fluctuations.
Recent experiments suggest that some morphogen gradients may be interpreted
prior to reaching steady-state. Theoretical work has predicted that such
systems will be more robust to embryo-to-embryo fluctuations. By analysing two
experimentally motivated models of morphogen gradient formation, we investigate
the positional precision of gene expression boundaries determined by
pre-steady-state morphogen gradients in the presence of embryo-to-embryo
fluctuations, internal biochemical noise and variations in the timing of
morphogen measurement. Morphogens that are direct transcription factors are
found to be particularly sensitive to internal noise when interpreted prior to
steady-state, disadvantaging early measurement, even in the presence of large
embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors
can be measured prior to steady-state without significant decrease in
positional precision provided fluctuations in the timing of measurement are
small. Applying our results to experiment, we predict that Bicoid, a
transcription factor morphogen in Drosophila, is unlikely to be interpreted
prior to reaching steady-state. We also predict that Activin in Xenopus and
Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be
decoded in pre-steady-state.Comment: 18 pages, 3 figure
Qualification Procedures of the CMS Pixel Barrel Modules
The CMS pixel barrel system will consist of three layers built of about 800
modules. One module contains 66560 readout channels and the full pixel barrel
system about 48 million channels. It is mandatory to test each channel for
functionality, noise level, trimming mechanism, and bump bonding quality.
Different methods to determine the bump bonding yield with electrical
measurements have been developed. Measurements of several operational
parameters are also included in the qualification procedure. Among them are
pixel noise, gains and pedestals. Test and qualification procedures of the
pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005,
Bonn, Germna
The Photon Structure Function at Small-x
It is shown that recent small-x measurements of the photon structure function
F_2^{\gamma}(x,Q^2) by the LEP-OPAL collaboration are consistent with
parameter-free QCD predictions at all presently accessible values of Q^2.Comment: 7 pages, LaTeX, 2 figure
CMS Barrel Pixel Detector Overview
The pixel detector is the innermost tracking device of the CMS experiment at
the LHC. It is built from two independent sub devices, the pixel barrel and the
end disks. The barrel consists of three concentric layers around the beam pipe
with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side
of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview
of the pixel barrel detector, its mechanical support structure, electronics
components, services and its expected performance.Comment: Proceedings of Vertex06, 15th International Workshop on Vertex
Detector
Collective motion of active Brownian particles in one dimension
We analyze a model of active Brownian particles with non-linear friction and
velocity coupling in one spatial dimension. The model exhibits two modes of
motion observed in biological swarms: A disordered phase with vanishing mean
velocity and an ordered phase with finite mean velocity. Starting from the
microscopic Langevin equations, we derive mean-field equations of the
collective dynamics. We identify the fixed points of the mean-field equations
corresponding to the two modes and analyze their stability with respect to the
model parameters. Finally, we compare our analytical findings with numerical
simulations of the microscopic model.Comment: submitted to Eur. Phys J. Special Topic
Вимоги видавничого відділу ІМФЕ ім. М. Т. Рильського до оформлення авторами рукописів
Industrial parts are manufactured to tolerances as no production process is capable of delivering perfectly identical parts. It is unacceptable that a plan for a manipulation task that was determined on the basis of a CAD model of a part fails on some manufactured instance of that part, and therefore it is crucial that the admitted shape variations are systematically taken into account during the planning of the task. We study the problem of orienting a part with given admitted shape variations by means of pushing with a single frictionless jaw. We use a very general model for admitted shape variations that only requires that any valid instance must contain a given convex polygon PI while it must be contained in another convex polygon PE. The problem that we solve is to determine, for a given h, the sequence of h push actions that puts all valid instances of a part with given shape variation into the smallest possible interval of final orientations. The resulting algorithm runs in O(hn) time, where n=|PI|+|PE|
A differential U-module algebra for U=U_q sl(2) at an even root of unity
We show that the full matrix algebra Mat_p(C) is a U-module algebra for U =
U_q sl(2), a 2p^3-dimensional quantum sl(2) group at the 2p-th root of unity.
Mat_p(C) decomposes into a direct sum of projective U-modules P^+_n with all
odd n, 1<=n<=p. In terms of generators and relations, this U-module algebra is
described as the algebra of q-differential operators "in one variable" with the
relations D z = q - q^{-1} + q^{-2} z D and z^p = D^p = 0. These relations
define a "parafermionic" statistics that generalizes the fermionic commutation
relations. By the Kazhdan--Lusztig duality, it is to be realized in a
manifestly quantum-group-symmetric description of (p,1) logarithmic conformal
field models. We extend the Kazhdan--Lusztig duality between U and the (p,1)
logarithmic models by constructing a quantum de Rham complex of the new
U-module algebra.Comment: 29 pages, amsart++, xypics. V3: The differential U-module algebra was
claimed quantum commutative erroneously. This is now corrected, the other
results unaffecte
- …
