10,270 research outputs found

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include

    Fiber optic wavelength division multiplexing: Principles and applications in telecommunications and spectroscopy

    Get PDF
    Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include

    Design and Performance of the CMS Pixel Detector Readout Chip

    Full text link
    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.Comment: 8 pages, 11 figures. Contribution to the Proceedings of the Pixel2005 Workshop, Bonn, German

    Generation of two-photon states with arbitrary degree of entanglement via nonlinear crystal superlattices

    Get PDF
    We demonstrate a general method of engineering the joint quantum state of photon pairs produced in spontaneous parametric downconversion (PDC). The method makes use of a superlattice structure of nonlinear and linear materials, in conjunction with a broadband pump, to manipulate the group delays of the signal and idler photons relative to the pump pulse, and realizes a joint spectral amplitude with arbitrary degree of entanglement for the generated pairs. This method of group delay engineering has the potential of synthesizing a broad range of states including factorizable states crucial for quantum networking and states optimized for Hong-Ou-Mandel interferometry. Experimental results for the latter case are presented, illustrating the principles of this approach.Comment: 4 pages, 4 figures, accepted Phys. Rev. Let

    Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion

    Get PDF
    We study the conditional preparation of single photons based on parametric downconversion, where the detection of one photon from a given pair heralds the existence of a single photon in the conjugate mode. We derive conditions on the modal characteristics of the photon pairs, which ensure that the conditionally prepared single photons are quantum-mechanically pure. We propose specific experimental techniques that yield photon pairs ideally suited for single-photon conditional preparation.Comment: 14 pages, 6 figure
    corecore