18 research outputs found

    Cytotoxic activities of new iron(III) and nickel(II) chelates of some S-methyl-thiosemicarbazones on K562 and ECV304 cells

    Get PDF
    The S-methyl-thiosemicarbazones of the 2- hydroxy-R-benzaldehyde (R= H, 3-OH 3-OCH3 or 4-OCH3) reacted with the corresponding aldehydes in the presence of FeCl3 and NiCl2. New ONNO chelates of iron(III) and nickel (II) with hydroxy- or methoxy-substitued N1,N4-diarylidene-Smethyl- thiosemicarbazones were characterized by means of elemental analysis, conductivity and magnetic measurements, UV-Vis, IR and 1H-NMR spectroscopies. Cytotoxic activities of the compounds were determined using K562 chronic myeloid leukemia and ECV304 human endothelial cell lines by MTT assay. It was determined that monochloro N1-4- methoxysalicylidene-N4-4-methoxysalicylidene-S-methylthiosemicarbazidato- iron(III) complex showed selective anti-leukemic effects in K562 cells while has no effect in ECV304 cells in the 0.53 μg/ml (IC50) concentrations. Also, some methoxy-substitued nickel(II) chelates exhibit high cytotoxic activitiy against both of these cell lines in low concentrations. Cytotoxicity data were evaluated depending on cell lines origin and position of the substituents on aromatic rings

    In vitro effects of vitamin C and selenium on NK activity of patients with beta-thalassemia major

    No full text
    In this study, the in vitro effects of vitamin C and selenium on natural killer (NK) cell activity of beta-thalassemia major patients was investigated. At first, significant decreased NK activity was found at E:T ratios of 1:1, 5:1, and 10:1 in whole thalassemia patients. Low-dose selenium treatment enhanced NK activity in patients but there was no change in the control group. High-dose selenium decreased NK activity significantly in splenectomized patients. Different doses vitamin C enhanced NK activity significantly in both splenectomized and unsplenectomized patients. According to these results, selenium dosage should be arranged carefully in thalassemia patients, whereas vitamin C can be used confidently

    Fabrication of collagen immobilized electrospun poly (vinyl alcohol) scaffolds

    No full text
    In the development of tissue engineering scaffolds, the interactions between material surface and cells play crucial roles. The biomimetic 3-D scaffolds absolutely provide better results for fulfilling requirements such as porosity, interconnectivity, cell attachment and proliferation. In this study, 3-D electrospun scaffolds were prepared by using an electrospinning technique. Photo cross-linkable polyvinyl alcohol was used as a polymeric matrix. During the electrospinning, the nanofibers were cross-linked with in situ ultraviolet radiation. The crosslinked polymer fibers were achieved in a simple process at a single step. Nanofiber surface was modified with collagen by a chemical approach. The chemical structures were proven by attentuated total reflectance Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The surface morphology of the nanofibers was characterized by scanning electron microscope (SEM). Morphological investigations show that the resulting nanofibrous matrix has uniform morphology with a diameter of 220-250 nm. In vitro attachment and growth of 3T3 mouse fibroblasts and human umbilical vein endothelial cells (ECV304) cells on polyvinyl alcohol-based nanofiber mats were also investigated. Cell attachment, proliferation, and methylthiazole tetrazolium cytotoxicity assays indicated good cell viability throughout the culture time, which was also confirmed by SEM analysis. Copyright (C) 2015 John Wiley & Sons, Ltd

    4-Vinylbenzene Boronic Acid-Hydroxy Apatite/Polyvinyl Alcohol Based Nanofiber Scaffold Synthesized by UV-Activated Reactive Electrospinning

    No full text
    In this study, we prepared photo-crosslinked modified HAP (hydroxy apatite)/polyvinyl alcohol (PVA) composite nanofiber scaffold for cell growth applications. HAP was synthesized and then modified with 4-vinylbenzene boronic acid (VBBA) to obtain 4-VBBA-HAP. By means of the simultaneous UV electrospinning technique 4-VBBA-HAP/PVA composite was obtained. The structure and morphology of electrospun membranes were investigated by scanning electron microscopy) and Fourier transform infrared spectroscopy technique. Nanofibers were treated with collagen solution via the spraying method. For the cell culture applications ECV304 and SAOS cells were seeded on the chosen electrospun fibrous scaffolds

    Chemical constituents of the different parts of Colchicum baytopiorum and their cytotoxic activities on K562 and HL60 cell lines

    No full text
    The plant chemistry and cytotoxic activity of Colchicum baytopiorum CD Brickell (Liliaceae/Colchicaceae), an endemic species growing in Turkey, has been studied for the first time. Nine known alkaloids were isolated and their structures were identified by spectral methods (UV, IR, (1)H-NMR, and ESI/MS), and the presence of three alkaloids, which could not be isolated from the plant, was also detected by LC/MS/MS spectrometry. Phenolic acids were elaborated using LC/MS and 11 phenolic acids were identified. The presence of two flavonoids appeared to be valuable for chemotaxonomic purposes. Guided by the brine shrimp lethality test (BSLT), methanol extracts were tested for cytotoxic activity by colorimetric MTT test on K562 and HL60 cells. Except the seed extract, all methanol extracts showed more cytotoxic activity on HL60 cells (IC(50) : 6.5- 500-44 mu g/mL)

    Iron(III) and nickel(ii) complexes as potential anticancer agents: Synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions

    No full text
    Template reactions of 2-hydroxy-R-benzaldehyde-S-methylisothiosemicarbazones (R = 3-methoxy or 4-hydroxy) with the corresponding aldehydes in the presence of FeCl3 and NiCl2 yielded N1,N4-disalicylidene chelate complexes. The compounds were characterized by means of elemental and spectroscopic methods. The structure of complex 1 was determined by X-ray single crystal diffraction. Crystal data (Mo K?; 296 K) are as follows: monoclinic space group P21/c, a = 12.9857(8) Å, b = 7.8019(4) Å, c = 19.1976(12) Å, ß = 101.655(5)°, Z = 4. Cytotoxic effects of the compounds were evaluated by the MTT assay in K562 leukemia, ECV304 endothelial and normal mononuclear cells, and DNA fragmentation analysis using the diphenylamine reaction was performed. The DNA binding capacity of thiosemicarbazones at IC50 and different concentrations was investigated. The DNA fragmentation percentage of compound treated cells was higher than that of non-treated control cells but was higher for compound 3 (84%) compared to the others. The interaction of compounds 1-4 and DNA was investigated voltammetrically by using nucleic acid modified electrodes after the double stranded fish sperm DNA (fsDNA), or poly(dA)·poly(dT), was immobilized onto the surface of pencil graphite electrodes (PGEs). Accordingly, the oxidation signals of DNA bases, guanine and adenine, were measured by using differential pulse voltammetry (DPV). The changes in the signals of guanine and adenine were evaluated before and after the interaction process. The results indicated that compound 3 was cytotoxic at very low concentrations in K562 leukemia cells unlike other cells and that could damage the DNA double stranded form, specifically the adenine base. Therefore, it may have a selective antileukemic effect and drug potential. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015
    corecore