46 research outputs found

    Socio-economic vision graph generation and handover in distributed smart camera networks

    Get PDF
    In this article we present an approach to object tracking handover in a network of smart cameras, based on self-interested autonomous agents, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the vision graph, that is, the camera neighbourhood relations, during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera network topologies, and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. We have evaluated our approach both in a simulation study and in network of real distributed smart cameras

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Automated Placement of Cameras in a Floorplan to Satisfy Task-Specific Constraints

    No full text
    In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain taskspecific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.

    Automatic Detection of Relevant Head Gestures in American Sign Language Communication

    No full text
    An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases

    Wetland spectral unmixing using multispectral satellite images

    No full text
    Wetlands are of great importance to the diversity of biota and ecology, thereby to humans. Monitoring such valuable areas is essential for sustainable development. When the sizes, geographic distribution, and total coverage of wetlands across the earth are taken into account, remote sensing shines out as the most economically and technically feasible method to realise the monitoring task. Concerning the utilisation of medium resolution satellite images as the input, the pixel-level approach falls short of understanding the wetland dynamics since vast amounts of pixels in such areas have mixed content. This study proposes a framework for determining the extent of wetlands and extracting their ground characteristics at the sub-pixel level. In the extent determination part, Tasselled Cap Water Index (TCWI) values are calculated on time series, and their variations throughout the year are modelled by fitting a double-sided sigmoid function. This information is coupled with Digital Terrain Model (DTM) thresholding to extract the final extent. A sub-pixel analysis is proposed for the latter part, which includes adopting a systematic approach using a three-element (soil, vegetation, water) scheme for establishing wetland ontology and implementing supervised spectral unmixing enhanced by band weight optimisation. Balıkdamı, one of the most impressive wetlands of Turkey, is chosen as the test area. Open-access optical satellite data acquired by the Sentinel-2 constellation are utilised as the primary data input. Since the abundance values of land cover classes in each Sentinel-2 pixel are estimated, reference abundance data with a 10 m ground sampling distance (GSD) are generated using four-band aerial images having a 30 cm GSD for the verification stage. A new method entitled ‘Abundance Confusion Matrix’ is introduced for comparison and detailed assessment of fractional land cover. Experimental results demonstrate that the extent determination is addressed with a precision of 99.21% and a miss rate of 5.75%. In addition, the abundance values of land cover classes are identified with an overall accuracy of 66.17% after the optimisation step. The proposed method proves to be a valuable tool for the detailed monitoring of wetlands

    S.Sclaroff: Automated camera layout to satisfy task-specific and floorplanspecific coverage requirements

    No full text
    In many multi-camera vision systems the effect of camera locations on the taskspecific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras ’ capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In experiments the performance of the resulting system is demonstrated with different real floorplans

    Optimal placement of cameras in floorplans to satisfy task requirements and cost constraints

    No full text
    Abstract. In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras’ capabilities that make these algorithms unsuitable for many real-world computer vision applications. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of realworld cameras. Given a floorplan to be observed, the problem is to efficiently compute a camera layout such that certain task-specific constraints are met and with minimal camera setup cost. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the system is demonstrated with two different practical experiments on a real floorplan.
    corecore