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In this paper we present an approach to object tracking handover in a network of smart cameras, based on
self-interested autonomous agents, which exchange responsibility for tracking objects in a market mecha-
nism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the
vision graph, i.e., the camera neighbourhood relations, during runtime, which may then be used to optimise
communication between cameras. The key benefits of our completely decentralised approach are on the one
hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera
network topologies, and on the other hand relying only on local information, increasing the robustness of
the system. Since our market-based approach does not rely on a priori topology information, the need for
any multi-camera calibration can be avoided. We have evaluated our approach both in a simulation study
and in network of real distributed smart cameras.

Categories and Subject Descriptors: C.2.3. [Computer-Communication Networks]: Network Manage-
ment; C.2.4. [Distributed Systems]: Distributed applications; I4.9. [Applications]
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1. INTRODUCTION
There is currently a trend in camera networks towards increasing resource-awareness,
adaptability and autonomy. Such visual sensor networks [Soro and Heinzelman 2009;
Bhanu et al. 2011] avoid resource-intensive infrastructures for data and energy distri-
bution, are able to modify their functionality during runtime and perform in-network
processing of the captured data. Object detection, tracking and activity recognition
are important image analysis tasks in multi-camera networks. Many approaches have
been proposed in the literature over the last few years (e.g., [Yilmaz et al. 2006]),
most of which rely on either some a priori knowledge about the network topology or
centralised algorithms. Recently, tracking applications have been developed on smart
camera networks where the processing is distributed among the camera nodes (e.g.,
[Li and Bhanu 2009; Song et al. 2010]). While these distributed approaches apply dif-
ferent control strategies for managing the tracking responsibilities, they rely on topol-
ogy knowledge and/or require iterative information exchange among the cameras. Our
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novel approach overcomes these limitations and is able to achieve robust, flexible and
scalable multi-camera control with low computation and communication overhead.

In this paper we present a socio-economic approach for online vision graph estima-
tion and tracking handover in smart camera networks. We use the term socio-economic
to describe our approach, since it is inspired by both social and economic principles.
The approach employs self-interested, autonomous cameras exchanging responsibility
for tracking objects in a market mechanism in order to maximise their own utility.
When a handover is required, an auction is initiated and cameras that have received
the auction initiation try to detect the object within their field of view (FOV). This
means, in case an object does move into the FOV of another camera and no auction
has been initiated, the object will pass unnoticed. Having the object detected within
its FOV, the camera can try to get the responsibility to track the object by bidding for
it. This allows each camera in the system to track only those objects returning a high
utility and keep resource expensive tasks such as (re-)detection of objects at a mini-
mum. By observing the trading behaviour we learn the visual neighbourhood relations
in the camera network and generate the vision graph of the network online. We apply
ant-colony inspired pheromones to grow this vision graph during runtime, which is
then used to optimise the communication effort among the cameras.

Our approach offers several significant benefits: it is fully decentralised, requires
only the exchange of local information, is computationally inexpensive, supports online
processing and does not require any a priori knowledge about the camera network or
objects of interest. As a result, the system is highly robust and works in dynamic
environments where a camera can be added or removed from the network at any time
without affecting any other parts of the network.

This paper extends our preliminary work [Esterle et al. 2011] by reporting on an
implementation of the technique in a network of real smart cameras, by an extensive
experimental evaluation and by a more detailed discussion of related work. The main
contributions of this research include the application of market-based principles to co-
ordinate the handover in multi-object, multi-camera tracking, the online generation of
the vision graph, the exploration of the trade-off between trading and communication
effort, and the use of ant inspired artificial pheromones to direct marketing effort in
order to efficiently manage this trade-off. Our novel approach has been evaluated by a
simulation study and experiments on a real smart camera network.

The remainder of this paper is structured as follows. Section 2 provides a background
to object tracking with distributed smart cameras and market-based control. Section
3 formally introduces the problem of handing over the tracking responsibility and the
identification of neighbourhood relations in multi-camera networks, i.e., the genera-
tion of the vision graph. Section 4 describes our approach, which makes use of local
utility functions to aid the decision process, a market mechanism to allow cameras to
hand over objects in order to maximise their utility, and pheromone-based rules for
automatic vision graph generation. Sections 5 and 6 describe our experimental study
based on simulations and measurements in a network of distributed smart cameras;
they also summarise key results. Finally, Section 7 discusses the implications of this
work and identifies areas for further study.

2. RELATED WORK
2.1. Object Tracking with Distributed Smart Cameras
In multi-camera tracking, the fundamental tasks of single camera object detection and
tracking must be expanded by a handover mechanism which refers to finding the next
camera to see the target object once it leaves the FOV of the current camera [Erdem
and Sclaroff 2005]. Various mechanisms have been proposed to solve the handover
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problem. These mechanisms vary in the required assumptions of the camera network,
the distribution of data and processing as well as the required resources [Li and Bhanu
2009].

In smart camera networks much effort is put on distributed and resource-aware han-
dover mechanisms due to increased scalability and robustness [Rinner and Wolf 2008].
One of the first autonomous handover approaches on smart cameras was presented by
Quaritsch et al. [Quaritsch et al. 2007]. This approach relies on a static and a priori
known vision graph. The neighbourhood structure is encoded in so-called migration re-
gions which assign neighbouring cameras to specific areas in the FOVs of the cameras.
Whenever a target object enters a migration region, a tracker is then started on the
neighbouring camera(s). Möller et al. [Möller et al. 2008] present a similar approach
which is also based on a static and a priori known vision graph to identify the next
camera for the handover.

Li and Bhanu [Li and Bhanu 2011] present a game-theoretic approach to camera
handover; as in our market-based approach, the next camera selection is based on a
utility function which is computed by a bargaining approach among cameras “seeing”
the tracking object. However, the bargaining requires several iterations among the
involved cameras. Additionally, the algorithm has been implemented in a centralised
way, which does not provide good scalability or robustness. Morioka et al. [Morioka
et al. 2010] describe a fuzzy-based camera selection method for multi-camera tracking.
Although the authors aim for a distributed and efficient solution, their approach re-
quires the tracking states and camera states of all cameras for every selection decision.
Qureshi and Terzopoulos [Qureshi and Terzopoulos 2008] introduce a distributed cam-
era coalition formation scheme for perceptive scene coverage and persistent surveil-
lance by smart camera sensor networks. They demonstrate the camera selection and
handover in a virtual environment. Chen et al. [Chen et al. 2010] introduce a handover
mechanism which considers the trackability of the object as well as the available re-
sources of the camera for selecting the new camera. The trackability of the object of
interest is computed by the resolution, the distance to the border of the FOV and oc-
clusion. However, this handover mechanism requires calibrated cameras with overlap-
ping FOVs.

The topology of a camera network is important for a number of higher-level func-
tions such as multi-camera tracking, target following or camera placement optimiza-
tion [Detmold et al. 2007]. There are two main cases to distinguish for topology esti-
mation: overlapping and non-overlapping FOVs [Radke 2010]. In the overlapping case,
cameras observe parts of the same environment from different perspectives, i.e., the
vision graph contains an edge between two cameras if they share some FOV. For ex-
ample, [Cheng et al. 2007] use SIFT features to identify common areas and create the
vision graph in a distributed camera network. In the non-overlapping case, cameras do
not observe the same part of the environment. Neighbourhood relationships between
the cameras—and hence edges in the vision graph—are induced by the likelihood that
an object in one camera appears in another after some time.

Observing moving objects within the network is often used to learn the topology
over time (e.g., [Ellis et al. 2003; Mandel et al. 2007; Kim et al. 2009]). The estima-
tion approaches vary in the topology assumptions (e.g., overlapping or non-overlapping
FOVs), topology modelling and the extraction of relevant information from individ-
ual camera views. Marinakis and Dudek [Marinakis and Dudek 2006] use a Monte
Carlo Expectation-Maximization algorithm to learn the neighbourhood relations in a
network of sensors. The approach uses only detection events from the deployed sen-
sors and results in a probabilistic model of the neighbourhood relations in the sensor
network. Makris et al. [Makris et al. 2004] exploit temporal correlations in observa-
tions of object movements, i.e., the entry and the exit points of the object in each cam-
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era, through the camera network. They also use Expectation-Maximization to learn a
Gaussian mixture model that links the entry/exit zones of neighbouring cameras.

In our approach, the trading of an object provides an implicit snapshot on the net-
work topology and is used as an event for generating the vision graph, i.e., the “selling”
and the “buying” by cameras represent a neighbourhood relationship.

2.2. Market-based Control
Fundamentally, the task of deciding which camera should track which object at a given
time can be viewed as a resource allocation problem: how to allocate the known objects
amongst the cameras, given their local knowledge, available resources and objectives
[Rinner et al. 2012]. Due to common ground between the characteristics of networks of
autonomous nodes and those of economic systems, one approach is to view the camera
network as an economy. Indeed, economics has long been successfully used as inspi-
ration for techniques to perform resource allocation in engineered systems. This has
resulted in a family of techniques, known as market-based control, concerned with
the application of economic principles in tackling resource allocation problems in dis-
tributed systems [Clearwater 1996].

The typical approach taken is for the actions and decisions of autonomous nodes
in a market-based system to be automated by the use of software agents, which in-
teract through some defined market mechanism. Buyer agents attempt to purchase
resources from the available sellers, to maximise their utility function, which is de-
rived from the task or requirements of the user. Sellers charge an amount of either
real or artificial money for the resource, at a price determined by their strategy and
dependent on factors such as the quantity or quality of the resource being provided.
Since self-interested buyers can be expected to pay more for resources which they de-
sire more, and self-interested sellers will charge what they can get away with in order
to maximise their payoff, resources will tend to go to those who value them the most.
The fundamental idea is that competition between agents for the same resources leads
to an efficient allocation, reflective of the agents’ objectives and preferences, as repre-
sented in their local utility functions.

Since the concept of market-based control was first proposed by Clearwater et al.
[Clearwater 1996], it has been applied to a wide range of application domains, with
significant benefits. In load management in giant-scale web services, Brewer [Brewer
2001] argues that by incorporating into a request for a resource, a notion of its value
or cost, smart agents allow for responsive adaptation and graceful degradation in the
presence of changes to the network. Similarly, Gupta et al. [Gupta et al. 1999] ar-
gued that mechanisms involving pricing and user self-selection can be preferable, since
they can remove the need for centrally managed and enforced resource usage limits.
The mechanisms used in market-based control systems typically fall into one of four
groups: centralised auctions, distributed auctions, bilateral bargaining and posted of-
fer markets. Reviews of the varying assumptions and benefits of these techniques are
provided by Cliff [Cliff 1997] and Lewis et al. [Lewis et al. 2010].

Common examples of centralised auctions include English, Dutch and Vickrey auc-
tions, in which a central auctioneer facilitates the bidding and determines the alloca-
tion of resources for all participating agents. Where scarcity exists on both the seller
and buyer sides, double auctions such as the Continuous Double Auction and Clear-
ing House provide an alternative approach [Friedman and Rust 1993]. Research in
the field of automated mechanism design also suggests that other less obvious auc-
tion mechanisms may lead to more efficient outcomes in certain circumstances [Phelps
et al. 2009]. Wolski et al.’s [Wolski et al. 2001] G-Commerce model is an example of an
application of a centralised market to resource allocation in computational grids.
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However, Cliff and Bruten [Cliff and Bruten 1998] argue that the presence of such a
centralised process or component removes the primary advantage of using a market-
based system: its robust, decentralised, self-organising properties. Distributed auction
mechanisms (e.g. [Hausheer and Stiller 2005]) attempt to mitigate this, reducing the
fragility associated with reliance upon a single point, providing more scalability and
allowing for dynamic composition of auctions. Typically, either the central auctioneer
is replaced by a number of local ones, which may communicate through some secure
means, or else the auctioneer role is fulfilled by a spare, disinterested node. Double
auctions for example, though relying on a specialist to match bids and asks [Phelps
et al. 2004], may be decentralised by the presence of multiple specialists between which
the participants may choose [Niu et al. 2008; Robinson et al. 2010].

One simple approach to distributed auctions, and that taken in this paper, is that
individual nodes themselves host independent auctions for their own resources. One
early example of this approach in computational resource allocation is Spawn [Wald-
spurger et al. 1992], in which agents attempting to acquire resources bid in sealed-bid
auctions hosted by agents of the providers, for their resources. Depending on the utility
functions of the buyers and the auction mechanism used by the resource owner, this
can require a high level of strategic ability on the part of buyers, as they must decide
in which auctions to participate. Since they may win multiple auctions, questions arise
of how to handle these situations. Literature exists which explores the dilemma faced
by buying agents bidding in multiple auctions, such as that by Gerding et al. [Gerding
et al. 2006; 2007]. However, this is only an issue if the buyer requires a limited supply
of equivalent commodities, which are available from a range of sellers. A buyer which
does not consider items as substitutes for each other need not be concerned with this
eventuality.

The third family of market-based control approaches depends not on an auctioneer
or other centralised entity, but instead makes use of the ability of intelligent agents to
bargain between themselves in order to arrive at acceptable prices. This approach is re-
alised in the AVALANCHE [Eymann 2001], and CATNET [Ardaiz et al. 2006] systems,
and takes inspiration from Agent-based Computational Economics (ACE) [Tesfatsion
and Judd 2006], an agent-based modelling technique which attempts to replicate the
dynamics of human markets with complex cognitive agents. Bargaining agents are the
subject of continuing research (e.g., [Gerding and La Poutré 2006; Lopes et al. 2008;
Chandra et al. 2010]).

The final family of approaches takes inspiration from modern retail markets, using
a mechanism usually referred to as the posted price or posted offer model [Plott and
Smith 1978; Ketcham et al. 1984], though in online content delivery it is sometimes
referred to as the quoted price model [Jagannathan and Almeroth 2002]. This is a fully
decentralised approach to the determination of price without the need for complex
bilateral negotiation, and provides a potentially simpler alternative. The application
of posted offer markets to computational resource allocation is the topic of ongoing
research [Lewis et al. 2010], and the technique has been shown to demonstrate high
levels of scalability and robustness. However one assumption of the current state of
the art is the ability of nodes to broadcast information globally about the system with
negligible cost.

In this paper, we make use of distributed owner-hosted Vickrey auctions [Vickrey
1961], as will be described in Section 4. Since we use Vickrey auctions, which have
truth-telling as their dominant strategy for single item auctions, we need not be con-
cerned with complex bidding strategies for buying agents. Additionally, since each ob-
ject to be tracked is unique and therefore our resources are not substitutable, our
buyers need not be concerned with the consequences of winning multiple auctions for
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the same item. However, with no centralised auctioneers, we retain the scalability and
robustness properties, which are inherent to the approach.

3. PROBLEM FORMULATION
Our primary objective is to track up to m distinct objects within the aggregated FOV
of n fixed cameras in the network. Although an object might be “seen” by several cam-
eras, a single camera is responsible for tracking this object. Thus, the network must
distribute the tracking responsibility for at most m objects among the n cameras at
any time. This tracking responsibility of camera i for object j can be expressed by j
being a member of the set of objects “owned” by i, which we denote as Oi. When we
say that camera i owns object j, we mean that it is responsible for tracking it, has the
right to track it, and that it may sell it to other cameras. However, since our cameras
are controlled by autonomous software agents, they make independent decisions about
which object(s) in Oi to attempt to track. The decision of camera i to attempt to track
object j is expressed as the binary function φi(j).

We assume that a camera can track up to k objects simultaneously without exceed-
ing its resource limitations and hence without any degradation of the tracking perfor-
mance. In our analysis we assume that the number of objects tracked by a camera is
less than k. Thus, a conservative limit on the number of objects would be m ≤ k. When
camera i attempts to track object j (φi(j) = 1), a tracking module is initialized with a
description of that object and is detecting and tracking the object within the FOV of the
camera. The tracking performance depends on various factors such as object descrip-
tor, distance, orientation, partial occlusion and so on. In our study we simplify single
camera tracking and subsume all these factors in a visibility parameter vj which is
determined by the distance and angle of the observed object to the observing camera.
The tracking performance is estimated by a confidence value cj . Both values cj and vj
are between 0 and 1 as soon as the observed object is within the FOV of a camera, 0
otherwise.

The handover of the tracking responsibility is a local mechanism in a camera net-
work, i.e., only the (small) set of neighbouring cameras can contribute to the handover
decision. The vision graph (Gv = (V,E)) expresses such neighbourhood relations in
the camera network. Two cameras i and k (both members of V ) are connected in Gv

by an directed edge ei,k ∈ E, if they have an overlapping FOV. We extend this basic
definition of Gv to non-overlapping cameras as well by introducing an edge if a mov-
ing object in camera i can appear in camera k within some time. Weights of the edges
can be used to express the likelihood and rates of the object re-appearance (cp. Section
4.2). Thus, to reduce communication for deriving the handover decision at camera i,
it is sufficient to exchange information only among i and its adjacent cameras NG(i).
As a side effect, besides reducing the communication, our approach reduces the overall
resource consumption within the network when only a small set of neighbouring cam-
eras contribute to the handover decision process. This is because only those cameras
have to (re-)detect the object upon request while other cameras are unaffected.

4. A SOCIO-ECONOMIC INSPIRED APPROACH
The approach presented in this paper takes inspiration from both social and economic
systems, and is based on two distinct concepts. First, the allocation of objects to cam-
eras makes use of a market-based approach, similarly to those described in Section 2.2.
Second, a pheromone-based mechanism inspired by social interactions in ant colonies
is used to build the vision graph online, based on trading activity. This is then used
to determine communication between cameras. The ant inspired approach is similar
to ant colony optimisation [Dorigo and Stützle 2004], where artificial pheromones are
used to find good (i.e., short) paths in a network. However our novel use of artificial
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pheromones to enable targeted marketing is a previously unexplored idea, which en-
ables the efficient management of the trade-off between communication and utility.
Additionally, the approach is robust to dynamics and inherently scalable. We therefore
believe it has significant potential for a range of decentralised applications, of which
distributed smart cameras are one example. The socio-economic algorithm is imple-
mented locally in each camera.

4.1. Utility and Market Mechanism
For a given camera i and its set of owned objects Oi, we say that the instantaneous
utility of camera i is given by

Ui(Oi, p, r) =
∑
j∈Oi

ui(j)− p+ r (1)

=
∑
j∈Oi

[cj · vj · φi(j)]− p+ r (2)

where φi : Oi → {0, 1} is 1 if camera i attempts to track object j and 0 otherwise.
In addition to utility earned by tracking objects, a camera b may make a payment to
another camera s in order to “buy” the right to track an object from that camera. This
requires that the “selling” camera s already itself owns the object. If an exchange is
agreed, then the object is removed from Os and added to Ob. p denotes the sum of all
payments made in trades in that iteration, and r conversely denotes the sum of all
payments received.

To facilitate the exchange of objects, we propose the use of Vickrey auctions [Vickrey
1961] hosted by the selling camera. The Vickrey auction, also known as the second
price sealed bid auction is a single sided auction where bidders make one sealed bid
for a single item. The auctioneer awards the item to the highest bidder, but at the price
bid by the second highest bidder.

The advantage of the Vickrey auction from an implementation perspective is that it
has a dominant strategy for bidders: to bid one’s truthful valuation, regardless of the
strategies of the other bidders. In contrast with other mechanisms, this removes the
need for cameras to possess adaptive bidding strategies, or be required to learn a high
performing context-dependent strategy. In common with other market-based control
systems (e.g. [Lewis et al. 2010]), currency is an artificial construct used as a tool for
system management; no real money is used.

Therefore, in our model each camera, in the absence of any vision graph information,
broadcasts information about the objects it is currently tracking in order to solicit bids.
Each camera i, upon observing such a broadcast, determines the likely value of having
the right to track the object (i.e., having it in Oi) and if this value is positive, subse-
quently responds privately to the broadcasting camera with its bid. In order to deter-
mine the likely value, each camera receiving an auction invitation checks whether an
object within its current FOV matches with the received object description. Since we
use a Vickrey auction, each camera may place only one bid and the dominant strategy
of each camera is to set this bid equal to its truthful valuation of the object in terms of
its contribution to the utility of the camera (see equation 2).

4.2. Pheromone-based Vision Graph Generation
One of the key advantages of our approach is that it does not require the vision graph
to be known a priori, since relative utility of the cameras is used to determine which
camera the object should be handed over to. However, the broadcast method used to
support this decision is inefficient in terms of communication overhead. For this rea-
son, we use a pheromone-based method for building the vision graph online, from the
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trading activity occurring in the market. As the cameras learn the vision graph, they
may scale down the amount of communication while still achieving high utility, by an-
nouncing their objects only to cameras which are their neighbours in the vision graph.

This use of artificial pheromones, built from previous trading activity to guide future
marketing activity, is a novel and highly useful method to achieve efficient outcomes in
the trade-off between communication and performance. Since the pheromones both are
reinforced and evaporate over time, changes in the topology of the underlying vision
graph during runtime can be adapted to in a robust manner, and the loss of individ-
ual cameras does not affect the wider system. Since marketing communication can be
concentrated on only those small number of relevant camera nodes, our socio-economic
approach allows significantly improved scalability.

In this model, vision graph information is distributed and local information is stored
in cameras. We therefore define for each camera i an adjacency list, Ei, the set of all
links (or edges) local to that camera. Each element of Ei is the tuple (i, x, τix), where
x is another camera in the network and τix is the strength of the link from camera i
to camera x. Each camera is initialised with an adjacency list containing tuples from
itself to all other cameras in the network, each tuple with a strength value τix = 0 for
all x. Subsequently, each time camera i successfully sells an object to camera x, the
corresponding strength value is increased by a value ∆. In ant colony optimisation,
the value of ∆ is often determined by the properties of the problem. Although we have
not yet investigated the effect of different ∆ values in our model, we expect that the
properties of the camera network and objects to be tracked will similarly affect optimal
values for ∆.

However, following the analogy with pheromone evaporation in ant colonies, over
time the strength of the links also decreases, allowing the system to overcome changes
in topology or fields of view of the cameras over time. The pheromone update rule is
shown in equation 3.

τix =

{
(1− ρ) · τix if no trade occurs on the edge
(1− ρ) · τix + ∆ if trade occurs on the edge

(3)

As in ant colony optimisation, ρ is the evaporation rate parameter, which can be un-
derstood as a forgetting factor; higher values lead the pheromone to evaporate faster,
enabling the system to adapt to changes quicker, but at a penalty of losing more his-
torical vision graph information. However, our approach here is not ant colony opti-
misation, since pheromone information is not used to find optimal routes through the
network, but instead to represent a social network of cameras with adjacent fields of
view.

The initial broadcast behaviour of cameras can then be dialled down as the vision
graph is built up. Specifically, when advertising an object that other cameras may wish
to buy, a camera i sends a message to camera x with probability P (i, x), otherwise it
does not communicate with camera i at that time.

In this paper we consider two ways of determining these communication probabili-
ties: first proportionally to the strength of the links, as given in equation 4 and second
where the camera always advertises to those in its vision graph, and with some small
probability every other camera in the network, as given in equation 5. We call these
communication schedules SMOOTH and STEP, respectively. This represents a novel use
of ant inspired systems in the computing domain, as a method of managing communi-
cation schedules.

PSMOOTH(i, x) =
1 + τix
1 + τim

(4)
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where m is the camera with the highest strength value, e.g.,

m = argmax
y

τiy,∀y

PSTEP(i, x) =

{
1 if τix > ε

η otherwise
(5)

where ε = 0.1. Only in the case of having no links in its vision graph (τim = 0), a camera
will use broadcast instead of STEP communication to build up its own vision graph.

4.3. Autonomous Camera Control
Putting together the aspects of the utility function of the camera, decision process,
trading behaviour and vision graph generation, we specify that each camera in the
system behaves according to algorithm 1.

ALGORITHM 1: The camera handover algorithm
(1) Object trading of camera i

(a) Advertise owned objects to each other camera x with probability P (i, x).
(b) For each received advertised object j, respond with a bid at value ui(j) if this is greater

than zero.
(c) Accept received bids for each object k for which ui(k) is less than the highest received

bid. For each accepted bid:
i. Remove k from Oi.

ii. Respond to the camera making the highest bid, informing it of the required payment,
the value of the second highest received bid.

iii. Increment the utility of the camera by the value of the second highest bid.
(d) For each object l for which the bid sent was accepted, add l to Oi and deduct the

payment amount from the utility of the camera.
(2) Vision graph update of camera i: Update τix for all x according to equation 3.
(3) Tracking decisions of camera i: Select which objects in Oi to track in order to maximise

Ui(Oi).
(4) Repeat at regular intervals.

As indicated in step 4, the handover algorithm should be repeated at regular inter-
vals to ensure that objects are handed over as close as possible to the optimal time,
but without spending unreasonable resources identifying objects in the scene purely
for the purposes of determining optimal bids.

As commonly used in distributed tracking applications, the object or person of in-
terest has to be defined by an operator. In our application, the operator therefore has
to connect to a remote camera and select the object or person to be tracked in a user
interface. This user interface is only required to initiate the tracking process and does
not act as a central component or is not needed in any way besides initialisation, to
support our approach.

5. EXPERIMENTAL STUDY IN SIMULATION
To test our approach, we created a software framework for simulating multiple object
tracking within a network of static cameras. Object movement and camera coverage
was simply modelled in 2D space. The simulation software was implemented in Java
and was able to simulate the movement of objects, the execution of the camera control
and the data exchange between cameras based on a fixed simulation time interval.
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5.1. Simulation Environment
In the simulation, the fields of view of the cameras are modelled as segments (however,
visualised as triangles in Figures 1 and 3). Each camera is controlled independently,
by an autonomous software agent capable of communicating with other such agents
via message passing. At this stage, we assume perfect single camera tracking (i.e.,
every object within the FOV is properly detected and identified) and calculate the vis-
ibility of an object based on the inverse 2D Euclidean distance between the camera
and the simulated position of the object. To keep a constant number of objects in the
simulation, objects cannot leave the simulation but once they reach the boundary of
the environment, change their direction randomly and continue in that direction until
another boundary is reached. Since objects do not leave our simulation environment,
objects will never get lost for the entire network forever. In a real environment this
might not be realistic. If a camera has not seen one of its owned objects and did not
receive a bid for the initiated auction for an extended amount of time, it may choose
to stop attempting to detect or track it, in order to save resources. Exactly how this
is handled is largely an implementation detail handled at the camera level, and will
depend on the priorities associated with the scenario.

In each simulation run, the total cumulative utility across all cameras was recorded
(the social welfare) as a measure of tracking performance. The number of messages
sent between cameras was also measured.

5.2. Test Scenarios
For the simulation framework, six qualitatively different test scenarios were defined,
and each of these was used to compare the performance of the six different variants of
the approach presented. These are illustrated in Figure 1. Scenario 1 is the simplest
scenario, consisting of a row of cameras. Scenario 2 is similar though the path of the
object is not always covered by cameras. This is used to illustrate that our approach
can deal with non-overlapping FOVs. Scenario 3 is more complex, simulating a heavily
covered corridor. Scenario 4 is similar, but with more irregular overlaps. Scenario 5
again is a rather simple scenario but this time using five cameras with staggered posi-
tions. And finally, scenario 6 illustrates an example network with 36 randomly placed
cameras.

Furthermore, we tested the approach with different numbers of objects. As already
mentioned, the number of objects is kept constant for the duration of each simulation
run. Initially each object moves in a straight line in a certain direction, which is defined
such that it moves through the FOVs of the cameras, until it reaches a boundary where
it changes its direction randomly.

5.3. Broadcast Approaches
Initially, two simple broadcast approaches, which we refer to as active and passive,
were tested in the simulation environment. In both approaches, each advertisement
message is broadcasted to all other cameras in the network. In the active approach,
each camera advertises every object it owns to the entire network at each simulation
time step. This means that other cameras attempt to gain ownership of objects as soon
as they enter their FOV. On the one hand this results in a perfect tracking utility since
the camera with the highest utility for an object always has ownership of it, but on the
other hand the communication between the cameras is significantly higher. Contrary
to this, the passive approach minimises the communication by sending advertisement
messages only when an object is about to leave the FOV of its current owner. Further-
more cameras are only required to attempt to gain ownership of objects when receiving
an auction initiation and hence have lower resource consumption. Though this reduces
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5 Scenario 6

Fig. 1. Illustrations of the scenarios tested. Each camera is represented by a circle, with its field of view
indicated by the associated triangle.

communication, it requires that the utility of the camera from the object is almost zero
before handing over, even though another camera might have had a better view earlier.
This means, our active approach refers to auctions being initiated at regular intervals
while our passive approach initiates auctions only on-demand, dependent on the phys-
ical environment.

Figure 2 shows the overall system utility (i.e., the tracking performance of the net-
work) and the communication overhead for the active and passive algorithms in sce-
nario 1 with a single object moving from left to right. The spikes in utility occur when
the object moves into the areas of high visibility in front of each of the cameras. Due
to the particular set-up of this scenario, there is little difference in utility between the
two approaches, other than between the final two cameras, where the active approach
is able to hand over the object sooner, which increases the visibility of the objects to the
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Fig. 2. System utility (above) and communication usage (below) over time, during a typical run of scenario
1 with one object. Active and passive broadcast algorithms are compared.

network, and hence system utility. However, it is clear that the active approach uses
significantly more communication.

Since the active approach yields the highest possible levels of communication and
utility, the subsequently presented results in this paper are normalised in each case
by the results from the active broadcast approach.

5.4. Multicast Approaches
It is clear that the market-based approach presented does not require a vision graph
in order to achieve effective object handover. However, by generating the vision graph
during runtime, the camera network is able to achieve outcomes which balance
more efficiently the trade-off between communication and tracking performance. By
scheduling the communication intelligently, as described in Section 4, the cameras
may intelligently reduce communication, while minimising the associated performance
penalty.

The following experiments illustrate the effect of the multicast approaches SMOOTH
and STEP, as described in Section 4, when applied to both the active and passive sched-
ules. In all cases, ρ = 0.005, ∆ = 1.0 and cj = 1 for all cameras.
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Iteration 0 Iteration 100

Iteration 200 Iteration 300

Fig. 3. The vision graph is built up during runtime through trading interactions. Red lines indicate links
in the vision graph; thickness indicates strength. Cameras are indicated as small squares. Tracked objects
are assigned to the respective camera via a dashed line.

Figure 3 illustrates the pheromone-based approach to building the vision graph on-
line during runtime. The state of the vision graph is shown at four points through
the simulation, from initialisation where no adjacency information is known. As the
objects are traded between cameras, the links (indicated by thicker red lines) are con-
structed. Over time, unused links reduce in strength.

Figure 4 shows the overall performance of each of the six variants of the approach on
scenario 1 (upper left), scenario 3 (upper right), scenario 5 (lower left) with one object
in the environment, and also our random scenario - scenario 6 (lower right) - with 31
objects in the environment. Due to the stochastic nature of the trajectory of the object
and the communication algorithms, mean and standard deviation are shown for each
approach, calculated over 30 independent runs.

These results clearly show that the greatest difference between outcomes in the
simpler scenarios is obtained when switching between active and passive approaches.
However, in the more complex scenarios (e.g., scenario 3 or 4), the different approaches
yield different outcomes in the trade-off between communication and tracking perfor-
mance. A Pareto front emerges, allowing the operator to select between different han-
dover algorithms based on how performance and communication are valued. As one
can see, the results for scenarios with a lower number of cameras make it important
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Fig. 4. Performance (overall utility calculated across 1000 time steps) for all six scenarios using our differ-
ent algorithms. Both utility and communication values are normalised by those from the active broadcast
algorithm. The trade-off between performance and communication is apparent. Due to the stochastic na-
ture of the object paths and algorithms, the mean and standard deviation are shown, calculated over 30
independent runs of the simulation.
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to select the right algorithm variant, while scenarios with a higher number of cameras
have to consider the correct communication strategy as well.

For example, it could be imagined that for a camera network, with a complexity sim-
ilar to scenario 3 or 4, where high tracking performance is crucial, and cameras are
connected with a high bandwidth connection, the active broadcast or active SMOOTH
approaches would be most suitable. However, in a deployment where cameras have
limited communication ability, some tracking performance can be traded off for com-
munication efficiency by selecting perhaps passive broadcast or even passive STEP.
Similar experiments with complex environments and larger numbers of objects yielded
qualitatively similar Pareto fronts, indicating that this is a characteristic of complex
tracking tasks. In completely random scenarios, though, switching between active and
passive approaches has less impact on the performance than switching between com-
munication schedules. This is mainly due to the fact that a high number of objects
may create very strong links between certain cameras at an early stage of the simula-
tion. Hence other cameras are not considered anymore as communication partners at
a later stage and therefore utility is lost. Again an operator could switch from broad-
cast communication to a less communication intensive approach as soon as the vision
graph is developed.

In [Esterle et al. 2012], we relaxed some of our previous assumptions such as in-
stantaneous handover, instantaneous detection, instantaneous auctions and instanta-
neous communication in our simulation environment which were not reflective of the
real world. Furthermore, we introduced events such as failures of cameras to our sim-
ulator to show the robustness of our algorithm. Doing so, we were able to show how
to improve our previous approach substantially in that paper, especially in terms of
robustness and adaptivity.

The cameras still learn neighbourhood relationships online, and cluster into groups
to reduce communication within the network. The paper presents our fully decen-
tralised approach increasing the adaptivity and robustness of the camera network
when compared to a static approach based on a priori known vision graph, while not
requiring a centralised component. The approach improves the robustness of the net-
work by enabling it to relearn the vision graph in case of camera failure. Furthermore,
it improves adaptivity by incorporating newly added cameras into the network during
runtime.

In [Esterle et al. 2012], we showed that different variants of our approach are able
to retain or even increase their utility after events occur which changes the topology
of the network. For example, when comparing cumulative network utility with overall
communication overhead, the technique maintains a steady performance despite the
presence of uncertainties. Depending on the scenario and the injected event (camera
failure or camera adding) the overall utility exploiting dynamic vision graph informa-
tion was 10%-20% better than exploiting only the static vision graph information.

6. EXPERIMENTAL STUDY WITH REAL CAMERAS
To evaluate our approach under realistic conditions, we implemented our novel multi-
camera tracking approach in a network of five distributed and autonomous smart cam-
eras. In this real network study, a feature-based tracker is responsible for tracking the
object of interest within the FOV of the camera. Each camera runs the autonomous
camera control algorithm (algorithm 1) to perform the tracking handover and to up-
date the locally stored vision graph information.

6.1. Experimental Setup
Our camera network is composed of custom-built smart cameras which are equipped
with an Intel Atom processor running at 1.6 GHz and an 100 MBit Ethernet interface
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Fig. 5. The smart camera platform. A custom-built camera running Linux on a 1.6GHz Intel Atom processor
with 2 GB memory and 100 MBit Ethernet interface. The image sensor is a CCD colour image sensor with
a native resolution of 1280× 1024 pixels.

(cp. Figure 5). The smart camera includes a CCD colour image sensor with a native
resolution of 1280× 1024 pixels. The processor runs a standard Linux distribution that
provides flexible integration of additional hardware modules and external software
libraries.

We placed the cameras in a laboratory room setting similar to the first two scenarios
of the simulation. In our experiments we performed tracking of a single person within
this network of five cameras. To achieve reproducible results, we recorded videos of
two different scenarios on each camera. For the evaluation, these synchronised videos
served then as input for the cameras. Test scenario 1 was recorded with overlapping
cameras and lasts about 70 seconds. Hence, the person was visible by at least one
camera during the entire test sequence. Test scenario 2 represents a non-overlapping
camera setup. Here the person moved differently; as a result, the person was not visible
for some period by any camera at all. Scenario 2 lasts about 130 seconds. Figure 6
shows selected captured images of all five cameras.

6.2. Implementation Details
Clearly, there are a number of differences between the simulation environment and the
real camera system. This required some refinements to the approach used, when im-
plementing the techniques designed on the simulation platform on the real network.
These implementation details are concerned with (i) the tracking algorithm and the
computation of the confidence, (ii) the required time for deriving the handover deci-
sion and (iii) the triggering of handover for the passive algorithm. We describe these
implementation aspects in the following paragraphs.

We use a simple frame-to-frame feature-based matching as single camera tracking
algorithm which exploits SIFT features [Lowe 2004] to model the object of interest.
To perform tracking in a single camera, the object must be first detected in an entire
frame using the SIFT feature model and, if successful, be re-identified within some
search window on a frame-by-frame basis. Thus, to advertise an object to a neighbour-
ing camera (cp. step 1(a) in algorithm 1) we need to transfer the object model. Again,
we do not use the SIFT features to build our vision graph. We rather use SIFT fea-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 2014.



Socio-Economic Vision Graph Generation and Handover in Distributed Smart Camera Networks0:17

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Fig. 6. Captures images of test scenario 2. Each column corresponds to one camera, and each row corre-
sponds to a specific time point. The time difference between individual rows is about 15 seconds. The blue
box represents the currently tracked object, and the orange box represents the boundary margin of the FOV
of the camera.

tures to track and re-identify objects and persons in other cameras and therefore do
not require overlapping FOVs.

In our implementation we define the matching rate of the SIFT features as confi-
dence for the object detection and tracking. The model of object j is given by the set
of SIFT features Fmj

of a specified region of interest1. To identify an object within the
FOV, the SIFT features of the current frame img are compared to Fmj using the SIFT
feature matching algorithm. Thus, we define the confidence cj of detection or tracking
object j by

cj =
|Fmj

|
|Match(Fimg, Fmj

)|
(6)

1Currently, this region of interest is defined by the user.
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where Match(Fimg, Fmj ) represents the set of matched features. Note that in the cur-
rent implementation we set the visibility parameter of an object j as vj = 1. Thus, we
do not currently consider distance and orientation information for the utility.

Due to the communication delay of the network, the object advertisement and the
subsequent object detection procedure at neighbouring cameras, the handover process
is no longer instantaneous. For example, the SIFT-based model of an object has a typ-
ically size of 100 kB. Thus, the transfer of such model during the advertisement and
the re-detection requires approximately 300 ms. To allow every camera enough time
to participate in an auction, every auction has a certain duration. This so called auc-
tion window, starts with the arrival of the first bid. As soon as the time of the auction
window has elapsed, the winner of the auction is being determined and newly arriving
bids are discarded. For the update of the vision graph we defined the ”sampling time”
as 100 ms. Thus, the strengths τi of all edges are decreased by (1− ρ) every 100 ms. As
defined in equation 3 a strength τix is increased by ∆ only if a trade between the two
cameras has occurred. In our implementation, we set ∆ = 1 and ρ = 0.005.

For the passive approach, we defined a margin in the FOV to trigger the advertise-
ment of an object (cp. Figure 6). Thus, when an object is detected three consecutive
times within the margin we consider the object to be about to leave the FOV of the
camera and start with handover.

6.3. Results
When implementing the technique on a real camera system, the significant effect of
two key differences became apparent. Firstly, the simulator operates using discrete
time, with one auction corresponding to one time-step, while the real system operates
in real-time. This becomes even more important since the tracker is not able to process
every single frame because it is computationally too intensive. The deviation for the
acquired utility emerges with every handover between the cameras. Table 6.3 com-
pares the number of handovers for the different scenarios using our active and passive
approaches with different auction windows. Therefore, an appropriate auction window
must be chosen for auctions to complete. Again, we ran our scenarios 30 times and,
similar to our simulation, we calculated the average of the accumulated utility over
all cameras in every second. We studied the cases when we used no auction window
as well as when the auction window was 500 milliseconds and one second for both our
active and our passive approach; figure 7 shows the results of this for scenario 1 and
scenario 2.

Table I. Comparison of handovers using different auction
windows within the active and passive approach in sce-
nario 1 and scenario 2.

0 ms 500 ms 1000 ms
Scenario 1 - Passive 4 4 4
Scenario 1 - Active 9 6 6
Scenario 2 - Passive 8 9 7
Scenario 2 - Active 18 14 14

As described in step 4, our algorithm has to be repeated at a regular interval. We
found that the choice of interval to repeat our algorithm as well as the choice of auc-
tion window may affect the utility obtained by the system, and hence the underlying
tracking performance of the network. Altering the auction window has the same effect
as altering the interval at which the algorithm is repeated, since the cameras do not
re-advertise objects while waiting for existing bids to arrive.
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This is also due to the fact that handing over tracking responsibility from one camera
to another does not work seamlessly. As soon as the auction ends and the winning
camera has been determined, the tracker at the selling camera is stopped and the
tracking responsibility is handed over to the winning camera. During this time no
utility is gathered and hence utility is lost. In case the tracker gains only little utility
by switching to another camera, this lost utility is not compensated. The illustrations
in Figure 7 show this effect in certain situations (e.g. Scenario 2) where the active
approach does not perform as well as the passive approach. Figure 8 clearly shows the
deviation in overall performance for small auction windows where our active approach
without an auction window does not lie on the Pareto front.

The second key difference of smart cameras is the processing power which is avail-
able to the operating trackers. Such resources can quickly become consumed when too
many trackers are operating concurrently, for example due to a large number of ob-
jects being tracked, or the need to respond to a large number of auction calls. When
this occurs, every single tracker will process fewer frames per second. This enhances
the effect of creating less utility for a certain camera and the respective trackers within
a discrete time window.

As in our simulation environment, we generated the vision graph during runtime.
We employed the vision graph for our communication schedules SMOOTH and STEP.
Figure 9 illustrates the generation of the vision graph during runtime for scenario 2.
One can see how the vision graph is built up over time and how it evaporates, due to a
lack of handovers between the cameras on the left.

Figure 10 shows the overall performance of our active and passive approaches using
broadcast, SMOOTH and STEP communication schedules for scenario 2 with one object
in the environment. Again there is a clear trade-off between the achieved utility and
communication. It is also apparent that the results of the deployed system are very
similar to the equivalent scenario studied in the simulation environment (see Figure 4,
scenario 1).

7. CONCLUSIONS
In this paper, we have presented a socio-economic approach to identify spatial relations
among FOVs in smart camera networks. This fully decentralised and computationally
efficient approach relies on self-interested, autonomous cameras which trade tracking
responsibilities for objects using Vickrey auctions. As demonstrated in our simulation
as well as in a real camera network, this virtual market for objects to track achieves
scalable and robust tracking handover without relying on any a priori topology knowl-
edge. By observing the trading behaviour we learn the visual neighbourhood relations
in the camera network and generate the vision graph. In our real network implemen-
tation, we demonstrated the autonomous handover and vision graph generation in
overlapping and non-overlapping scenarios. We demonstrated the generation of a vi-
sion graph using a simple frame-to-frame feature based matching algorithm exploit-
ing SIFT features. To compensate delays introduced by communication (e.g., transfer
of the object model) and processing (e.g., object detection and tracking) we evaluated
different auction window sizes.

In our experiments we have explored the trade-off between communication effort
and tracking performance. We have presented a novel ant-inspired method for ef-
ficiently targeting marketing communication effort, such that the associated utility
penalty in the trade-off is minimised. Our market-based approach results in a Pareto
front for the tracking scenarios. Hence, a network operator can choose among different
performance/communication settings.

In simple simulation scenarios, passive approaches achieved a communication re-
duction of around 75% for a 20% penalty in tracking performance. Using our implemen-
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Scenario 1 - 1 Second Scenario 2 - 1 Second

Scenario 1 - 500 ms Scenario 2 - 500 ms

Scenario 1 - 0 ms Scenario 2 - 0 ms

Fig. 7. Illustrations of the accumulated utility over time using the 1 second auction window for auctions
used in the active and passive approach in scenario 1 as well as for scenario 2 (top row), the 500 millisecond
auction window for auctions used in active and passive approach in the first and second scenario (middle
row) and bot approaches without an auction window (bottom row).

tation in a real camera network, similar simple scenarios achieved a communication
reduction around 40−45% for only 10−15% penalty in tracking performance. The more
complex the scenarios got, the higher was the trade-off between active and passive ap-
proaches and allowed reductions in communication by as much as 90%. Interestingly,
in completely random scenarios the broadcast approaches showed superiority over our
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Fig. 8. Direct comparison of the different durations of auctions in our active approach versus the different
auction windows in our passive approach. Again, Active - A, Active - B, and Active - C represent the active
approach initiating an auction every third processed frame with timing windows of 1 second, 500 ms, and
no timing window, respectively. It is apparent that the selection of an appropriate auction window may have
a high impact to the overall performance.

0 Seconds 40 Seconds

80 Seconds 120 Seconds

Fig. 9. The vision graph is built up during runtime through trading interactions for scenario 2 in our
real camera network. Dots indicate cameras, lines indicate links in the vision graph; thickness indicates
strength.

SMOOTH and STEP approaches where passive broadcast had about 65% more overall
utility than passive STEP but only about 25% more communication effort.

We believe that socio-economic methods can fundamentally help to increase auton-
omy, robustness and flexibility in smart camera networks. However, there is still a lot
of room for future work. One direction is to relax some of our assumptions on track-
ing performance, networking capabilities and resource consumption of cameras. Espe-
cially, introducing a more constraining resource model for each camera might be very
interesting. This would extend our current utility function for objects, introduce a cost
for tracking objects and make the owning camera even more special. Another direc-
tion includes the modelling of the utility function over (future) time periods and the
elaboration of more advanced trading mechanisms. Yet another direction is the exper-
imental evaluation of this novel approach on larger camera networks and to explore
the trade-off among performance, communication and resources in more detail.
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Fig. 10. Performance (overall utility calculated over duration of scenarios) of each of the six algorithms
in scenario 2. Both utility and communication values are normalised by those of the active broadcast. The
trade-off between the two approaches in a real system is apparent.
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