343 research outputs found

    Evaluation of the self-inflating bag-valve-mask and non-rebreather mask as preoxygenation devices in volunteers.

    Get PDF
    OBJECTIVE: To evaluate and compare the effectiveness and tolerability of preoxygenation with the self-inflating bag-valve-mask (BVM) and non-rebreather mask (NRM) as are used before emergency anaesthesia. DESIGN: Device performance evaluation. SETTING: Experimental study. PARTICIPANTS: 12 male and 12 female healthy volunteers (age range 24-47) with no history of clinically significant respiratory disease. INTERVENTIONS: End-expiration oxygen measurements (F(E)O(2)) after 3 min of preoxygenation with BVM (without mechanical assistance) and NRM devices. Mask pressures were measured and subjective difficulty of breathing was also assessed with a visual analogue score (VAS). PRIMARY AND SECONDARY OUTCOME MEASURES: The final F(E)O(2) achieved was 58.0% (SD 7.3%) for the NRM compared to 53.1% (SD 13.4%) for the BVM (p=0.072). Preoxygenation was associated with small increases in F(E)CO(2) that were greater for the BVM (0.50%; 95% CI 0.48 to 0.52) than the NRM (0.29%; 95% CI 0.31 to 0.28); this difference was statistically significant (p=0.028). Both devices were well tolerated on VAS assessment of difficulty of breathing although this was higher for the BVM than the NRM (median VAS 1.85/10 compared to 1.1/10; p=0.041). Inspiratory and expiratory mask pressures were higher for the BVM. CONCLUSIONS: In healthy volunteers, the NRM performs comparably to the BVM in terms of the degree of denitrogenation achieved although neither performed well. Although it was well tolerated, the BVM was subjectively more difficult to breathe through and was associated with greater mask pressures and a small increase in F(E)CO(2) consistent with hypoventilation or rebreathing. Our results suggest that preoxygenation with the NRM may be a preferable approach in spontaneously breathing patients

    Cerebrovascular Signal Complexity Six Hours after Intensive Care Unit Admission Correlates with Outcome after Severe Traumatic Brain Injury.

    Get PDF
    Disease states are associated with a breakdown in healthy interactions and are often characterized by reduced signal complexity. We applied approximate entropy (ApEn) analysis to investigate the correlation between the complexity of heart rate (ApEn-HR), mean arterial pressure (ApEn-MAP), intracranial pressure (ApEn-ICP), and a combined ApEn-product (product of the three individual ApEns) and outcome after traumatic brain injury. In 174 severe traumatic brain injured patients, we found significant differences across groups classified by the Glasgow Outcome Score in ApEn-HR (p = 0.007), ApEn-MAP (p = 0.02), ApEn-ICP (p = 0.01), ApEn-product (p = 0.001), and pressure reactivity index (PRx) (p = 0.004) in the first 6 h. This relationship strengthened in a 24 h and 72 h analysis (ApEn-MAP continued to correlate with death but was not correlated with favorable outcome). Outcome was dichotomized as survival versus death, and favorable versus unfavorable; the ApEn-product achieved the strongest statistical significance at 6 h (F = 11.0; p = 0.001 and F = 10.5; p = 0.001, respectively) and was a significant independent predictor of mortality and favorable outcome (p < 0.001). Patients in the lowest quartile for ApEn-product were over four times more likely to die (39.5% vs. 9.3%, p < 0.001) than those in the highest quartile. ApEn-ICP was inversely correlated with PRx (r = -0.39, p < 0.000001) indicating unique information related to impaired cerebral autoregulation. Our results demonstrate that as early as 6 h into monitoring, complexity measures from easily attainable vital signs, such as HR and MAP, in addition to ICP, can help triage those who require more intensive neurological management at an early stage.This is the author accepted manuscript. The final version is available from Mary Ann Liebert via http://dx.doi.org/10.1089/neu.2015.422

    Cerebrovascular signal complexity six hours after ICU admission correlates with outcome following severe traumatic brain injury

    Get PDF
    Disease states are associated with a breakdown in healthy interactions and are often characterised by reduced signal complexity. We applied approximate entropy (ApEn) analysis to investigate the correlation between the complexity of heart rate (ApEn-HR), mean arterial pressure (ApEn-MAP), intracranial pressure (ApEn-ICP) and a combined ApEn-Product (product of the three individual ApEns) and outcome after traumatic brain injury. In 174 severe traumatic brain injured patients we found significant differences across groups classified by the Glasgow Outcome Score in ApEn-HR (p = 0.007), ApEn-MAP (p = 0.02), ApEn-ICP (p = 0.01), ApEn-Product (p = 0.001) and PRx (p = 0.004) in the first 6-hours. This relationship strengthened in a 24-hour and 72-hour analysis (ApEn-MAP continued to correlate with death but was not correlated with favourable outcome). Outcome was dichotomized as survival vs death, and favourable vs unfavourable; the ApEn-Product achieved the strongest statistical significance at 6-hours (F = 11.0; p = 0.001 and F = 10.5; p = 0.001, respectively) and was a significant independent predictor of mortality and favourable outcome (p < 0.001). Patients in the lowest quartile for ApEn-Product were over four times more likely to die (39 .5% vs 9.3%, p < 0.001) compared to those with the highest quartile. ApEn-ICP was inversely correlated with PRx (r = -0.39, p < 0.000001) indicating unique information related to impaired cerebral autoregulation. Our results demonstrate that as early as 6-hours into monitoring, complexity measures from easily attainable vital signs, such as heart rate and mean arterial pressure, in addition to intracranial pressure can help triage those who require more intensive neurological management at an early stage.This is the author accepted manuscript. The final version is available from Mary Ann Liebert via http://dx.doi.org/10.1089/neu.2015.422
    • …
    corecore