197 research outputs found

    Experimental characterization of anomalous strong scattering of mm-waves in TEXTOR plasmas with rotating islands

    Get PDF
    Anomalous scattering of high power millimetre waves from gyrotrons at 140 and 110 GHz is investigated for plasma with rotating islands at TEXTOR. The magnetic field and plasma density influence the spectral content of the scattered waves and their power levels significantly. Anomalous strong scattering occurs in two density regimes, one at low densities and one at high densities, that also depend on the magnetic field. The two regimes are separated by a quiescent regime without anomalous scattering. Investigations suggest that scattering in the high-density regime is generated at the low-field side intersection of the gyrotron beam and the island position. The transition from the quiescent regime to the high-density regime occurs when the gyrotron frequency is twice the upper hybrid frequency at this position. There is some evidence that the scattering in the low-density regime is generated near the plasma centre. Under this assumption all the observed scattering is generated when the gyrotron frequency is near or below twice the upper hybrid frequency

    Influence of plasma turbulence on microwave propagation

    Get PDF
    It is not fully understood how electromagnetic waves propagate through plasma density fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.Comment: 16 pages, 13 figures. This is an author-created, un-copyedited version of an article submitted for publication in Plasma Physics and Controlled Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Diagnostics development for quasi-steady-state operation of the Wendelstein 7-X stellarator (invited)

    Get PDF
    The critical issues in the development of diagnostics, which need to work robust and reliable under quasi-steady state conditions for the discharge durations of 30 min and which cannot be maintained throughout the one week duration of each operation phase of the Wendelstein 7-X stellarator, are being discussed

    Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    Get PDF
    A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2, 3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4, 5, 6, 7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG
    corecore