587 research outputs found

    Mechanical Mixing in Nonlinear Nanomechanical Resonators

    Full text link
    Nanomechanical resonators, machined out of Silicon-on-Insulator wafers, are operated in the nonlinear regime to investigate higher-order mechanical mixing at radio frequencies, relevant to signal processing and nonlinear dynamics on nanometer scales. Driven by two neighboring frequencies the resonators generate rich power spectra exhibiting a multitude of satellite peaks. This nonlinear response is studied and compared to nthn^{th}-order perturbation theory and nonperturbative numerical calculations.Comment: 5 pages, 7 figure

    A nanomechanical resonator shuttling single electrons at radio frequencies

    Full text link
    We observe transport of electrons through a metallic island on the tip of a nanomechanical pendulum. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. We explain the I-V curve, which differs from previous theoretical predictions, with model calculations based on a Master equation approach.Comment: 5 pages, 4 jpeg-figure

    Existence of positive solutions of a superlinear boundary value problem with indefinite weight

    Full text link
    We deal with the existence of positive solutions for a two-point boundary value problem associated with the nonlinear second order equation u+a(x)g(u)=0u''+a(x)g(u)=0. The weight a(x)a(x) is allowed to change its sign. We assume that the function g ⁣:[0,+[Rg\colon\mathopen{[}0,+\infty\mathclose{[}\to\mathbb{R} is continuous, g(0)=0g(0)=0 and satisfies suitable growth conditions, so as the case g(s)=spg(s)=s^{p}, with p>1p>1, is covered. In particular we suppose that g(s)/sg(s)/s is large near infinity, but we do not require that g(s)g(s) is non-negative in a neighborhood of zero. Using a topological approach based on the Leray-Schauder degree we obtain a result of existence of at least a positive solution that improves previous existence theorems.Comment: 12 pages, 4 PNG figure

    Electromechanics of charge shuttling in dissipative nanostructures

    Full text link
    We investigate the current-voltage (IV) characteristics of a model single-electron transistor where mechanical motion, subject to strong dissipation, of a small metallic grain is possible. The system is studied both by using Monte Carlo simulations and by using an analytical approach. We show that electromechanical coupling results in a highly nonlinear IV-curve. For voltages above the Coulomb blockade threshold, two distinct regimes of charge transfer occur: At low voltages the system behave as a static asymmetric double junction and tunneling is the dominating charge transfer mechanism. At higher voltages an abrupt transition to a new shuttle regime appears, where the grain performs an oscillatory motion back and forth between the leads. In this regime the current is mainly mediated by charges that are carried on the grain as it moves from one lead to the other.Comment: 8 pages, 10 figures, final version to be published in PR

    Sturm-Liouville operators on time scales

    Full text link
    We establish the connection between Sturm-Liouville equations on time scales and Sturm--Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm-Liouville equations on time scales which have been obtained by various authors in the past.Comment: 12 page

    Binary trees, coproducts, and integrable systems

    Get PDF
    We provide a unified framework for the treatment of special integrable systems which we propose to call "generalized mean field systems". Thereby previous results on integrable classical and quantum systems are generalized. Following Ballesteros and Ragnisco, the framework consists of a unital algebra with brackets, a Casimir element, and a coproduct which can be lifted to higher tensor products. The coupling scheme of the iterated tensor product is encoded in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new appendices adde

    Cytolytic T Lymphocytes Specific for Tumors and Infected Cells from Mice with a Retrovirus-induced Immunodeficiency Syndrome.

    Get PDF
    LP-BM5 retrovirus complex-infected C57BL/6 mice develop immunodeficiency, somewhat analogous to AIDS, termed murine AIDS (MAIDS). After secondary stimulation with syngeneic B-cell lymphomas from LP-BM5-infected mice, C57BL/6 mice produced vigorous CD8+ cytotoxic T lymphocytes specific for MAIDS-associated tumors. An anti-LP-BM5 specificity was suggested because spleen and lymph node cells from LP-BM5-infected mice served as target cells in competition assays, and cells from LP-BM5, but not ecotropic, virus-infected mice functioned as secondary in vitro stimulators to generate cytotoxic T lymphocytes to MAIDS tumors

    Higher-order Abel equations: Lagrangian formalism, first integrals and Darboux polynomials

    Full text link
    A geometric approach is used to study a family of higher-order nonlinear Abel equations. The inverse problem of the Lagrangian dynamics is studied in the particular case of the second-order Abel equation and the existence of two alternative Lagrangian formulations is proved, both Lagrangians being of a non-natural class (neither potential nor kinetic term). These higher-order Abel equations are studied by means of their Darboux polynomials and Jacobi multipliers. In all the cases a family of constants of the motion is explicitly obtained. The general n-dimensional case is also studied
    corecore