23 research outputs found

    Secure Association for the Internet of Things

    Get PDF
    Existing standards (ZigBee and Bluetooth Low Energy) for networked low-power wireless devices do not support secure association (or pairing) of new devices into a network: their association process is vulnerable to man-in-the-middle attacks. This paper addresses three essential aspects in attaining secure association for such devices. First, we define a user-interface primitive, oblivious comparison, that allows users to approve authentic associations and abort compromised ones. This distills and generalizes several existing approve/abort mechanisms, and moreover we experimentally show that OC can be implemented using very little hardware: one LED and one switch. Second, we provide a new Message Recognition Protocol (MRP) that allows devices associated using oblivious comparison to exchange authenticated messages without the use of public-key cryptography (which exceeds the capabilities of many IoT devices). This protocol improves upon previously proposed MRPs in several respects. Third, we propose a robust definition of security for MRPs that is based on universal composability, and show that our MRP satisfies this definition

    Imaging and Quantification of Myocardial Perfusion Using Real-Time Three-Dimensional Echocardiography

    Get PDF
    ObjectivesWe tested the feasibility of real-time three-dimensional echocardiographic (RT3DE) perfusion imaging and developed and validated an algorithm for volumetric analysis of myocardial contrast inflow. The study included three protocols wherein perfusion was measured: 1) in an ex-vivo model of controlled global coronary flow, 2) in an in-vivo model during regional perfusion variations, and 3) in humans during pharmacologically induced hyperemia.BackgroundThe RT3DE technology offers an opportunity for myocardial perfusion imaging without multi-slice reconstruction and repeated contrast maneuvers.MethodsElectrocardiographically triggered harmonic RT3DE datasets were acquired (Philips 7500) while infusion of Definity was initiated and reached a steady state. Protocol 1 was performed in nine isolated rabbit hearts and included three coronary flow levels. In protocol 2, changes in regional perfusion caused by partial left anterior descending artery occlusion were measured in five pigs. In protocol 3, adenosine-induced changes in perfusion were measured in eight normal volunteers. Myocardial video-intensity (MVI) was measured over time in three-dimensional (3D) slices to calculate peak contrast inflow rate (PCIR). In pigs, PCIR was measured on a regional basis and validated against microspheres.ResultsThe RT3DE imaging allowed selection of slices for perfusion analysis in rabbit hearts, pigs, and humans. Administration of contrast resulted in clearly visible and quantifiable changes in MVI. In rabbits, The PCIR progressively decreased with coronary flow (p < 0.0001). In pigs, coronary occlusion caused a 59 ± 26% decrease in PCIR exclusively in the left anterior descending artery territory (p < 0.05) in agreement with microspheres. In humans, adenosine increased PCIR to 198 ± 57% of baseline (p < 0.05).ConclusionsContrast-enhanced RT3DE imaging provides the basis for volumetric imaging and quantification of myocardial perfusion

    Theory of multiexciton generation in semiconductor nanocrystals

    Full text link
    We develop a generalized framework based on a Green's function formalism to calculate the efficiency of multiexciton gen-eration in nanocrystal quantum dots. The direct/indirect absorption and coherent/incoherent impact ionization mechanisms, often used to describe multiexciton generation in nanocrystals, are reviewed and rederived from the unified theory as certain approximations. In addition, two new limits are described systematically - the weak Coulomb coupling limit and the semi-wide band limit. We show that the description of multiexciton generation in nanocrystals can be described as incoherent process and we discuss the scaling of multiexciton generation with respect to the photon energy and nanocrystal size. Illustrations are given for three prototype systems: CdSe, InAs and silicon quantum dots.Comment: 9 pages, 5 figure

    Very large electronic structure calculations using an out-of-core filter diagonalization method

    No full text
    We present an out-of-core filter-diagonalization method which can be used to solve very large electronic structure problems within the framework of the oneelectron pseudopotential-based methods. The approach is based on the following three steps. First, nonorthogonal states in a desired energy range are generated using the filter-diagonalization method. Next, these states are orthogonalized using the Householder QR orthogonalization method. Finally, the Hamiltonian is diagonalized within the subspace spanned by the orthogonal states generated in the second step. The main limiting step in the calculation is the orthogonalization step, which requires a huge main memory for large systems. To overcome this limitation we have developed and implemented an out-of-core orthogonalization method which allows us to store the states on disks without significantly slowing the computation. We apply the out-of-core filter-diagonalization method to solve the electronic structure of a quantum dot within the framework of the semiempirical pseudopotential method and show that problems which require tens of gigabytes to represents the electronic states and electronic density can be solved on a persona

    S.: Mapping Structures for Flash Memories: Techniques and Open Problems

    No full text
    Flash memory is a type of electrically erasable programmable read-only memory (EEPROM). Because flash memories are nonvolatile and relatively dense, they are now used to store files and other persistent objects in handheld computers, mobile phones, digital cameras, portable music players, and many other computer systems in which magnetic disks are inappropriate. Flash, like earlier EEPROM devices, suffers from two limitations. First, bits can only be cleared by erasing a large block of memory. Second, each block can only sustain a limited number of erasures, after which it can no longer reliably store data. Due to these limitations, sophisticated data structures and algorithms are required to effectively use flash memories. These algorithms and data structures support efficient not-in-place updates of data, reduce the number of erasures, and level the wear of the blocks in the device. This survey presents these algorithms and data structures as well as open theoretical problems that arise in this area. 1
    corecore