26 research outputs found

    Leaching of Mycobacterium avium Subsp paratuberculosis in Soil under In Vitro Conditions

    Get PDF
    Mycobacterium avium subsp paratuberculosis (Map), the causative agent of Johne's disease, has a robust ability to survive in the environment. However, the ability of Map to migrate through soil to drainage tiles or ground water, leave the farm, and leak into local watersheds is inadequately documented. In order to assess the ability of Map to leach through soil, two laboratory experiments were conducted. In the first study, 8 columns (30 cm long each) of a sandy loam soil were treated with pure cultures of Map. Two soil moisture levels and two Map concentrations were used. The columns were leached with 500 mL of water once a week for three weeks, the leachate was collected, and detection analysis was conducted. In the second experiment, manure from Map negative cows (control) and Map high shedder cows (treatment) were deposited on 8 similar columns and the columns were leached with 500 mL of water once a week for four weeks. Map detection and numeration in leachate samples were done with RT-PCR and culture techniques, respectively. Using RT-PCR, Map could be detected in the leachates in both experiments for several weeks but could only be recovered using culture techniques in experiment one. Combined, these experiments indicate the potential for Map to move through soil as a result of rainfall or irrigation following application

    Isolation and Genetic Analysis of Bovine Viral Diarrhea Virus from Infected Cattle in Indiana

    Get PDF
    Species and biotype distribution was determined in 44 bovine viral diarrhea virus- (BVDV-) positive samples submitted to the Animal Disease Diagnostic Laboratory (ADDL) in Indiana during 2006–2008. BVDV RNA was detected in the 5′-untranslated region and Npro region using reverse transcriptase PCR followed by sequencing analysis of the PCR product. Additionally, cases were classified into one of six categories according to history and/or lesions: acute symptomatic, hemorrhagic, respiratory distress, reproductive, persistent infection (PI), and mucosal disease (MD). Of 44 BVDV-positive samples, 33 were noncytopathic (ncp), 10 were cytopathic (cp), and one presented both ncp and cp biotypes. Sequencing analysis demonstrated that all samples belonged to BVDV-1a, BVDV-1b, or BVDV-2. The most common isolate was ncp BVDV-1b, (44%) followed by ncp BVDV-2a (24%). Among the six categories, respiratory clinical signs were the most common (36%) followed by PI (25%) and MD (16%)

    Access to Research Veterinary Medicine International Volume

    Get PDF
    Mycobacterium avium subsp paratuberculosis (Map), the causative agent of Johne's disease, has a robust ability to survive in the environment. However, the ability of Map to migrate through soil to drainage tiles or ground water, leave the farm, and leak into local watersheds is inadequately documented. In order to assess the ability of Map to leach through soil, two laboratory experiments were conducted. In the first study, 8 columns (30 cm long each) of a sandy loam soil were treated with pure cultures of Map. Two soil moisture levels and two Map concentrations were used. The columns were leached with 500 mL of water once a week for three weeks, the leachate was collected, and detection analysis was conducted. In the second experiment, manure from Map negative cows (control) and Map high shedder cows (treatment) were deposited on 8 similar columns and the columns were leached with 500 mL of water once a week for four weeks. Map detection and numeration in leachate samples were done with RT-PCR and culture techniques, respectively. Using RT-PCR, Map could be detected in the leachates in both experiments for several weeks but could only be recovered using culture techniques in experiment one. Combined, these experiments indicate the potential for Map to move through soil as a result of rainfall or irrigation following application

    Examination of critical factors influencing ruminant disease dynamics in the Black Sea Basin

    Get PDF
    IntroductionRuminant production in the Black Sea basin (BSB) is critical for national economies and the subsistence of rural populations. Yet, zoonoses and transboundary animal diseases (TADs) are limiting and threatening the sector. To gain a more comprehensive understanding, this study characterizes key aspects of the ruminant sector in nine countries of the BSB, including Armenia, Azerbaijan, Belarus, Bulgaria, Georgia, Moldova, Romania, Türkiye, and Ukraine.MethodsWe selected six priority ruminant diseases (anthrax, brucellosis, Crimean Congo haemorrhagic fever (CCHF), foot-and-mouth disease (FMD), lumpy skin disease (LSD), and peste des petits ruminants (PPR)) that are present or threaten to emerge in the region. Standardized questionnaires were completed by a network of focal points and supplemented with external sources. We examined country and ruminant-specific data such as demographics, economic importance, and value chains in each country. For disease-specific data, we analysed the sanitary status, management strategies, and temporal trends of the selected diseases.Results and discussionThe shift from a centrally planned to a market economy, following the collapse of the Soviet Union, restructured the ruminant sector. This sector played a critical role in rural livelihoods within the BSB. Yet, it faced significant challenges such as the low sustainability of pastoralism, technological limitations, and unregistered farms. Additionally, ruminant health was hindered by informal animal trade as a result of economic factors, insufficient support for the development of formal trade, and socio-cultural drivers. In the Caucasus and Türkiye, where diseases were present, improvements to ruminant health were driven by access to trading opportunities. Conversely, European countries, mostly disease-free, prioritized preventing disease incursion to avoid a high economic burden. While international initiatives for disease management are underway in the BSB, there is still a need for more effective local resource allocation and international partnerships to strengthen veterinary health capacity, protect animal health and improve ruminant production

    Cattle transhumance and agropastoral nomadic herding practices in central Cameroon

    Get PDF
    Abstract Background In sub-Saharan Africa, livestock transhumance represents a key adaptation strategy to environmental variability. In this context, seasonal livestock transhumance also plays an important role in driving the dynamics of multiple livestock infectious diseases. In Cameroon, cattle transhumance is a common practice during the dry season across all the main livestock production zones. Currently, the little recorded information of the migratory routes, grazing locations and nomadic herding practices adopted by pastoralists, limits our understanding of pastoral cattle movements in the country. GPS-tracking technology in combination with a questionnaire based-survey were used to study a limited pool of 10 cattle herds from the Adamawa Region of Cameroon during their seasonal migration, between October 2014 and May 2015. The data were used to analyse the trajectories and movement patterns, and to characterize the key animal health aspects related to this seasonal migration in Cameroon. Results Several administrative Regions of the country were visited by the transhumant herds over more than 6 months. Herds travelled between 53 and 170 km to their transhumance grazing areas adopting different strategies, some travelling directly to their destination areas while others having multiple resting periods and grazing areas. Despite their limitations, these are among the first detailed data available on transhumance in Cameroon. These reports highlight key livestock health issues and the potential for multiple types of interactions between transhumant herds and other domestic and wild animals, as well as with the formal livestock trading system. Conclusion Overall, these findings provide useful insights into transhumance patterns and into the related animal health implications recorded in Cameroon. This knowledge could better inform evidence-based approaches for designing infectious diseases surveillance and control measures and help driving further studies to improve the understanding of risks associated with livestock movements in the region

    Long-Term Survival of Mycobacterium avium

    Get PDF
    The objective was to evaluate the survival of Mycobacterium paratuberculosis (Map) in naturally infected dairy cows feces under long periods of freezing at −18°C and −70°C. Samples were collected from cows previously tested positive with serum ELISA or fecal culture, or with clinical signs of Johne's disease. Samples were stored at −18°C and/or −70°C and recultured in Herrold's egg yolk media every 3–6 months. A proportional odds mixed model was used for data analysis. Sixty nine fecal samples were stored for different periods between September 2002 and January 2005. Of these, 45 (65%) were stored at −18°C and 24 (35%) at −70°C. Average number of days between repeated culture dates was 98 and 84 for −18°C and −70°C, respectively. Median number of repeated cultures was 6 and 4 for samples stored at −18°C and −70°C, respectively. After adjusting for initial sample bacterial load, the effects of temperature or number of thawing and refreezing cycles on Map viability were not significant. The probability that a sample decreases from high to moderate-low bacterial load and from moderate-low to negative bacterial load was 13.5% per month. Although this study found gradual reduction of Map concentration in stored fecal samples through time, overall survival in −18°C can ease fecal samples management in laboratories with low-processing capacity or lack of −70°C freezer

    \u3ci\u3eMycobacterium avium\u3c/i\u3e Subsp. \u3ci\u3eparatuberculosis\u3c/i\u3e from Free-Ranging Deer and Rabbits Surrounding Minnesota Dairy Herds

    Get PDF
    The objectives of this study were to estimate the prevalence of Mycobacterium avium subsp. paratuberculosis (MAP) among deer and rabbits surrounding infected and noninfected Minnesota dairy farms using fecal culture, and to describe the frequency that farm management practices were used that could potentially lead to transmission of infection between these species. Fecal samples from cows and the cow environment were collected from 108 Minnesota dairy herds, and fecal pellets from free-ranging white-tailed deer and eastern cottontail rabbits were collected from locations surrounding 114 farms; all samples were tested using bacterial culture. In addition, a questionnaire was administered to 114 herd owners. Sixty-two percent of the dairy herds had at least 1 positive fecal pool or environmental sample. A total of 218 rabbit samples were collected from 90% of the herds, and 309 deer samples were collected from 47% of the herds. On 2 (4%) of the farms sampled, 1 deer fecal sample was MAP positive. Both farms had samples from the cow fecal pool and cow environment that were positive by culture. On 2 (2%) other farms, 1 rabbit fecal sample was positive by culture to MAP, with one of these farms having positive cow fecal pools and cow environmental samples. Pasture was used on 79% of the study farms as a grazing area for cattle, mainly for dry cows (75%) and bred or prebred heifers (87%). Of the 114 farms, 88 (77%) provided access to drylot for their cattle, mainly for milking cows (77/88; 88%) and bred heifers (87%). Of all study farms, 90 (79%) used some solid manure broadcasting on their crop fields. Of all 114 farms, the estimated probability of daily physical contact between cattle manure and deer or rabbits was 20% and 25%, respectively. Possible contact between cattle manure and deer or rabbits was estimated to occur primarily from March through December. The frequency of pasture or drylot use and manure spreading on crop fields may be important risk factors for transmission of MAP among dairy cattle, deer, and rabbits. Although the MAP prevalence among rabbits and deer is low, their role as MAP reservoirs should be considered

    Transboundary spread of pig diseases: the role of international trade and travel

    No full text
    Abstract As globalization increases the interconnectedness between nations, economies, and industries, the introduction of diseases will continue to remain a prominent threat to the livestock sector and the trade of animals and animal products, as well as the livelihoods of farmers, food security and public health. The global pig sector, with its size and dichotomy between production type and biosecurity level, is particularly vulnerable to the transmission of transboundary animal diseases such as African and classical swine fever, foot and mouth disease, or porcine reproductive and respiratory syndrome. All of the above pose a constant threat to swine health, mainly as a result of both formal and informal international trade. Inspired in the risk assessment methodology, this paper classifies and provides an overview of the different pig disease introduction and exposure pathways, illustrated with abundant examples. Introduction pathways are classified as formal international trade (by product), informal international trade (by product), and spread through fomites. Formal trade of pigs and pork products is regulated by legislation and measures protecting animal populations from exotic diseases. Much more difficult to control is the transboundary swine disease transmission originating through informal trade, which entails illegal smuggling, but also the informal cross-border transfer of animals and products for personal use or within informal market chains. Meat products are most commonly mentioned, although fomites have also played a role in some cases, with live pigs, being more difficult to smuggle playing a role less frequently. The main exposure pathways are also described with the oral route playing a prominent role. Risk assessments can aid in the identification of pathways of pathogen introduction and exposure. However, quantitative information on informal disease introduction pathways remains very scarce and often incomplete, making it difficult to estimate the actual magnitudes of risks. Nevertheless, this knowledge is deemed essential to set up risk based awareness, prevention and surveillance programs that correspond to reality
    corecore