55 research outputs found

    The use of donor-derived veto cells in hematopoietic stem cell transplantation

    Get PDF
    The induction of immune tolerance by specific agents, as opposed to general immune suppression, is a most desirable goal in transplantation biology. One approach to attain this goal is afforded by the use of donor-derived cells endowed with veto activity, which is the ability of a cell to specifically suppress only T cells directed against its antigens. A megadose of purified veto CD34+ hematopoietic stem cells is already used in patients to allow hematopoietic stem cells transplantation (HSCT) across major genetic barriers, while avoiding severe graft versus host disease (GVHD). However, allowing engraftment of such T cell-depleted HSCT under safer reduced intensity conditioning (RIC) protocols still remains a challenge. Therefore, combining megadose of CD34+ HSCT with other GVHD-depleted veto cells could enable facilitation of engraftment of HSCT under RIC without the adverse complication of GVHD. This approach might provide a safer modality for enabling engraftment of HSCT, enabling its application in elderly patients who cannot tolerate intensive protocols and to a variety of patients with non-malignant disorders, associated with longer life expectancy, in whom the use of a high risk conditioning cannot be considered

    Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation

    Get PDF
    The state of the transcriptome reflects a balance between mRNA production and degradation. Yet how these two regulatory arms interact in shaping the kinetics of the transcriptome in response to environmental changes is not known. We subjected yeast to two stresses, one that induces a fast and transient response, and another that triggers a slow enduring response. We then used microarrays following transcriptional arrest to measure genome-wide decay profiles under each condition. We found condition-specific changes in mRNA decay rates and coordination between mRNA production and degradation. In the transient response, most induced genes were surprisingly destabilized, whereas repressed genes were somewhat stabilized, exhibiting counteraction between production and degradation. This strategy can reconcile high steady-state level with short response time among induced genes. In contrast, the stress that induces the slow response displays the more expected behavior, whereby most induced genes are stabilized, and repressed genes are destabilized. Our results show genome-wide interplay between mRNA production and degradation, and that alternative modes of such interplay determine the kinetics of the transcriptome in response to stress

    Enhanced production yields of rVSV-SARS-CoV-2 vaccine using Fibra-CelĀ® macrocarriers

    Get PDF
    The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-Ī”G-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-Ī”G-spike production in serum-free Vero cells using porous Fibra-CelĀ® macrocarriers in fixed-bed BioBLUĀ®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms

    Personalized approaches to active immunotherapy in cancer

    No full text
    Immunotherapy is emerging as a promising anti-cancer curative modality. However, in contrast to recent advances obtained employing checkpoint blockade agents and T cell therapies, clinical efficacy of therapeutic cancer vaccines is still limited. Most vaccination attempts in the clinic represent "off-the shelf" approaches since they target common "self" tumor antigens, shared among different patients. In contrast, personalized approaches of vaccination are tailor-made for each patient and in spite being laborious, hold great potential. Recent technical advancement enabled the first steps in the clinic of personalized vaccines that target patient-specific mutated neo-antigens. Such vaccines could induce enhanced tumor-specific immune response since neo-antigens are mutation-derived antigens that can be recognized by high affinity T cells, not limited by central tolerance. Alternatively, the use of personalized vaccines based on whole autologous tumor cells, overcome the need for the identification of specific tumor antigens. Whole autologous tumor cells could be administered alone, pulsed on dendritic cells as lysate, DNA, RNA or delivered to dendritic cells in-vivo through encapsulation in nanoparticle vehicles. Such vaccines may provide a source for the full repertoire of the patient-specific tumor antigens, including its private neo-antigens. Furthermore, combining next-generation personalized vaccination with other immunotherapy modalities might be the key for achieving significant therapeutic outcome
    • ā€¦
    corecore