132 research outputs found

    Transcriptome-based reconstructions from the murine knockout suggest involvement of the urate transporter, URAT1 (slc22a12), in novel metabolic pathways.

    Get PDF
    URAT1 (slc22a12) was identified as the transporter responsible for renal reabsorption of the medically important compound, uric acid. However, subsequent studies have indicated that other transporters make contributions to this process, and that URAT1 transports other organic anions besides urate (including several in common with the closely related multi-specific renal organic anion transporters, OAT1 (slc22a6) and OAT3 (slc22a8)). These findings raise the possibility that urate transport is not the sole physiological function of URAT1. We previously characterized mice null for the murine ortholog of URAT1 (mURAT1; previously cloned as RST), finding a relatively modest decrement in urate reabsorptive capacity. Nevertheless, there were shifts in the plasma and urinary concentrations of multiple small molecules, suggesting significant metabolic changes in the knockouts. Although these molecules remain unidentified, here we have computationally delineated the biochemical networks consistent with transcriptomic data from the null mice. These analyses suggest alterations in the handling of not only urate but also other putative URAT1 substrates comprising intermediates in nucleotide, carbohydrate, and steroid metabolism. Moreover, the analyses indicate changes in multiple other pathways, including those relating to the metabolism of glycosaminoglycans, methionine, and coenzyme A, possibly reflecting downstream effects of URAT1 loss. Taken together with the available substrate and metabolomic data for the other OATs, our findings suggest that the transport and biochemical functions of URAT1 overlap those of OAT1 and OAT3, and could contribute to our understanding of the relationship between uric acid and the various metabolic disorders to which it has been linked

    Organic Anion and Cation Transporter Expression and Function During Embryonic Kidney Development and in Organ Culture Model Systems

    Get PDF
    Background Organic anion and cation transporters (OATs, OCTs and OCTNs) mediate the proximal tubular secretion of numerous clinically important compounds, including various commonly prescribed pharmaceuticals. Here, we examine the ontogeny of these transporters in rat embryonic kidney in detail, both in vivo and in two in vitro organ culture models of kidney development, whole embryonic kidney (WEK) culture and culture of induced metanephric mesenchyme (MM). Methods We used QPCR to determine expression levels of transporter genes in rat embryonic kidneys on each day of gestation from ed13 to ed18, in induced and un-induced MM, and on each day of one week of WEK culture. We also used uptake of fluorescein as a novel functional assay of organic anion transporter expression in WEK and MM. Results The developmental induction of the various organic anion and cation transporter genes does not occur uniformly: some genes are induced early (e.g., Oat1 and Oat3, potential early markers of proximal tubulogenesis), and others not till kidney development is relatively advanced (e.g., Oct1, a potential marker of terminal differentiation). We also find that the ontogeny of transporter genes in WEK and MM is similar to that observed in vivo, indicating that these organ culture systems may appropriately model the expression of OATs, OCTs and OCTNs. Conclusion We show that WEK and MM cultures may represent convenient in vitro models for study of the developmental induction of organic anion and cation transporters. Functional organic anion transport as measured by fluorescein uptake was evident by accumulation of the fluorescence in the developing tubule in these organ cultures. By demonstrating the mediated uptake of fluorescein in WEK and MM, we have established a novel in vitro functional assay of transporter function. We find that OATs, OCTs, and OCTNs are differentially expressed during proximal tubule development. Our findings on the renal ontogeny of organic anion and cation transporters could carry implications both for the development of more rational therapeutics for premature infants, as well as for our understanding of proximal tubule differentiation

    The Hyperspherical Harmonics Method: A Tool for Testing and Improving Nuclear Interaction Models

    Get PDF
    none6siThe Hyperspherical Harmonics (HH) method is one of the most accurate techniques to solve the quantum mechanical problem for nuclear systems with a number of nucleons A ≤ 4. In particular, by applying the Rayleigh-Ritz or Kohn variational principle, both bound and scattering states can be addressed, using either local or non-local interactions. Thanks to this versatility, the method can be used to test the two- and three-nucleon components of the nuclear interaction. In the present review we introduce the formalism of the HH method, both for bound and scattering states. In particular, we describe the implementation of the method to study the A = 3 and 4 scattering problems. Second, we present a selected choice of results of the last decade, most representative of the latest achievements. Finally, we conclude with a discussion of what we believe will be the most significant developments within the HH method for the next 5–10 years.openMarcucci L.E.; Dohet-Eraly J.; Girlanda L.; Gnech A.; Kievsky A.; Viviani M.Marcucci, L. E.; Dohet-Eraly, J.; Girlanda, L.; Gnech, A.; Kievsky, A.; Viviani, M

    Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Get PDF
    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats

    Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591
    corecore