1,462 research outputs found

    Optimization of Fast-Decodable Full-Rate STBC with Non-Vanishing Determinants

    Full text link
    Full-rate STBC (space-time block codes) with non-vanishing determinants achieve the optimal diversity-multiplexing tradeoff but incur high decoding complexity. To permit fast decoding, Sezginer, Sari and Biglieri proposed an STBC structure with special QR decomposition characteristics. In this paper, we adopt a simplified form of this fast-decodable code structure and present a new way to optimize the code analytically. We show that the signal constellation topology (such as QAM, APSK, or PSK) has a critical impact on the existence of non-vanishing determinants of the full-rate STBC. In particular, we show for the first time that, in order for APSK-STBC to achieve non-vanishing determinant, an APSK constellation topology with constellation points lying on square grid and ring radius \sqrt{m^2+n^2} (m,n\emph{\emph{integers}}) needs to be used. For signal constellations with vanishing determinants, we present a methodology to analytically optimize the full-rate STBC at specific constellation dimension.Comment: Accepted by IEEE Transactions on Communication

    Block-Orthogonal Space-Time Code Structure and Its Impact on QRDM Decoding Complexity Reduction

    Full text link
    Full-rate space time codes (STC) with rate = number of transmit antennas have high multiplexing gain, but high decoding complexity even when decoded using reduced-complexity decoders such as sphere or QRDM decoders. In this paper, we introduce a new code property of STC called block-orthogonal property, which can be exploited by QR-decomposition-based decoders to achieve significant decoding complexity reduction without performance loss. We show that such complexity reduction principle can benefit the existing algebraic codes such as Perfect and DjABBA codes due to their inherent (but previously undiscovered) block-orthogonal property. In addition, we construct and optimize new full-rate BOSTC (Block-Orthogonal STC) that further maximize the QRDM complexity reduction potential. Simulation results of bit error rate (BER) performance against decoding complexity show that the new BOSTC outperforms all previously known codes as long as the QRDM decoder operates in reduced-complexity mode, and the code exhibits a desirable complexity saturation property.Comment: IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 8, December 201

    Research progress of the impact of nonalcoholic fatty liver disease on chronic hepatitis B infection

    Get PDF
    Chronic hepatitis B (CHB) is an infectious disease caused by persistent infection with the hepatitis B virus (HBV) and is highly prevalent worldwide. Non-alcoholic fatty liver disease (NAFLD) is a group of liver diseases related to metabolic abnormalities, excluding those caused by alcohol consumption or other liver injury factors. In recent years, with improvement of living standards and changes in lifestyle, the incidence of NAFLD has been increasing substantially, becoming the most common type of liver diseases in China and Western countries, and the second leading cause of liver transplantation in the West. The rising prevalence of NAFLD has also led to an increase in the incidence of NAFLD in patients with chronic HBV infection. However, there is considerable controversy both domestically and internationally regarding the relationship between these two diseases, including the disease progression, pathogenesis, impact on antiviral treatment efficacy, and prognosis of these concomitant CHB and NAFLD patients. Currently, both domestic and international guidelines lack detailed descriptions of diagnostic and treatment strategies for these conditions. This article summarizes the recent research progress in concomitant CHB and NAFLD, including epidemiology, diagnostic criteria, the impact of NAFLD on the virology of HBV infection, potential mechanisms of NAFLD-induced negative regulation of HBV, the effect of NAFLD on antiviral therapy efficacy, and prognosis. This article aims to gain a deeper understanding of the diseases themselves and provide new insights for basic and clinical research as well as diagnostic and treatment approaches

    Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics – Gatifloxacin and balofloxacin : Degradation kinetics, photobyproducts and risk to the aquatic environment

    Get PDF
    Fluoroquinolone antibiotics (FQs) are ubiquitous and ionisable in surface waters. Here we investigate gatifloxacin (GAT) and balofloxacin (BAL), two widely used FQs, and determine the photochemical reactivity of their respective dissociation species that arise at different pH to understand the relevance and pathways of phototransformation reactions. Simulated-sunlight experiments and matrix calculations showed that neutral forms (HFQs0) of the two antibiotics had the highest apparent photolytic efficiency and hydroxyl-radical oxidation reactivity. Based on the pH-dependent photochemical reactivities, the solar apparent photodegradation half-lives (t1/2) in sunlit surface waters ranged from 14.5–169 min and was 1–2 orders of magnitude faster than hydroxyl-radical induced oxidation (t1/2 = 20.9–29.8 h). The corresponding pathways were proposed based on the identification of key intermediates using HPLC-ESI-MS/MS. The apparent photodegradation induced defluorination, decarboxylation, and piperazinyl oxidation and rearrangement, whereas hydroxyl-radical oxidation caused hydroxylated defluorination and piperazinyl hydroxylation. The photomodified toxicity of GAT and BAL was examined using an Escherichia coli activity assay. E. coli activity was not affected by BAL, but was significantly affected by the photo-modified solutions of GAT, indicating that primary photo-degradates have a comparable or higher antibacterial activity than the parent GAT. In fresh water and seawater this antibacterial activity remained high for up to 24 h, even after GAT had undergone significant photodegradation (>1 half-life), indicating the potential impact of this chemical on microbial communities in aquatic systems

    Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations

    Get PDF
    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes

    SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Get PDF
    SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices

    Aqueous multivariate phototransformation kinetics of dissociated tetracycline:implications for the photochemical fate in surface waters

    Get PDF
    Antibiotics are ubiquitous pollutants in aquatic systems and can exist as different dissociated species depending on the water pH. New knowledge of their multivariate photochemical behavior (i.e., the photobehavior of different ionized forms) is needed to improve our understanding on the fate and possible remediation of these pharmaceuticals in surface and waste waters. In this study, the photochemical degradation of aqueous tetracycline (TC) and its dissociated forms (TCH20, TCH−, and TC2−) was investigated. Simulated sunlight experiments and matrix calculations indicated that the three dissociated species had dissimilar photolytic kinetics and photooxidation reactivities. TC2− photodegraded the fastest due to apparent photolysis with a kinetic constant of 0.938 ± 0.021 min−1, followed by TCH− (0.020 ± 0.005 min−1) and TCH20 (0.012 ± 0.001 min−1), whereas TCH− was found to be the most highly reactive toward •OH (105.78 ± 3.40 M−1s−1), and TC2− reacted the fastest with 1O2 (344.96 ± 45.07 M−1 s−1). Water with relatively high pH (e.g., ~ 8–9) favors the dissociated forms of TCH− and TC2− which are most susceptible to photochemical loss processes compared to neutral TC. The calculated corresponding environmental half-lives (t1/2,E) in sunlit surface waters ranged from 0.05 h for pH = 9 in midsummer to 3.68 h for pH = 6 in midwinter at 45° N latitude. The process was dominated by apparent photolysis (especially in summer, 62–91%), followed by 1O2 and •OH oxidation. Adjusting the pH to slightly alkaline conditions prior to UVor solar UV light treatment may be an effective way of enhancing the photochemical removal of TC from contaminated water

    Microbiological and Clinical Characteristics of Bloodstream Infections in General Intensive Care Unit: A Retrospective Study

    Get PDF
    BackgroundBloodstream infections (BSI) are one of the common causes of morbidity and mortality in hospitals; however, the pathogenic spectrum and bacterial antibiotic resistance vary across the world. Therefore, identifying the pathogenic spectrum and changes in bacterial antibiotic resistance is critical in controlling BSI and preventing the irrational use of antibiotics. This study evaluated the microbiological and clinical data of BSI patients in the intensive care unit (ICU) of Tianjin Medical University General Hospital in Tianjin, China, to guide the selection of empirical antibiotic therapy.MethodsThis study retrospectively analyzed the distribution and antibiotic resistance of pathogens based on the clinical data of BSI patients presented in the ICU of a tertiary teaching hospital from 2018 to 2020. Test performance for the prediction of pathogen species was assessed by receiver operating characteristic (ROC) analysis.ResultsThe analysis of the data of 382 BSI cases (10.40 cases per thousand patient day) revealed the most frequently isolated microorganisms to be Klebsiella pneumonia (11.52%), followed by Escherichia coli (9.95%), Staphylococcus epidermidis (9.95%), Candida parapsilosis (8.12%), and Enterococcus faecium (8.12%). Out of the isolated E. coli and K. pneumonia strains, 52.63, and 36.36%, respectively, were extended-spectrum β-lactamase (ESBL) positive. The antibiotic-resistance rate of the ESBL-positive strains was 30.56% for piperacillin/tazobactam, 5.56% for imipenem, and 11.11% for tigecycline. In addition, most A. baumannii belonged to the group of multidrug-resistant (MDR) strains, with an antibiotic-resistance rate of 90.48% for meropenem and 16.00% for amikacin. However, polymyxin-resistant A. baumannii strains were not detected. Four strains of methicillin-resistant S. aureus (MRSA) (4/21, 19.05%) and one strain of vancomycin-resistant enterococci (VRE) were detected, with a resistance rate of 4.76 and 2.32%, respectively. Among the isolated 55 fungal strains, C. parapsilosis was the most common one (30/55, 56.36%), with an antibiotic-resistance rate of 5.77% for voriconazole, fluconazole, and itraconazole. The presence of amphotericin B-or flucytosine-resistant strains was not observed. Compared with the patients with Gram-positive and fungal pathogens, patients with Gram-negative bacteria exhibited the highest sequential organ failure assessment (SOFA) score (P < 0.001), lowest Glasgow Coma Scale (GCS) (P = 0.010), lowest platelet (PLT) value (P < 0.001), highest plasma creatinine (Cr) value (P = 0.016), and the highest procalcitonin (PCT) value (P < 0.001). The AUC in the ROC curve was 0.698 for the differentiation of Gram-negative BSI from Gram-positive BSI. A cutoff value of 8.47 ng/mL for PCT indicated a sensitivity of 56.9% and a specificity of 75.5%. The AUC in the ROC curve was 0.612 for the differentiation of bacteremia from fungemia. A cutoff value of 4.19 ng/mL for PCT indicated a sensitivity of 56.8% and a specificity of 62.7%.ConclusionAmong the bloodstream infection strains in ICU, Gram-negative bacteria have the highest drug resistance rate, and will cause more serious brain damage, renal function damage and thrombocytopenia. So clinician should pay more attention to the treatment of Gram-negative bacteria in patients with bloodstream infection in ICU. The test index of PCT can be used to distinguish Gram-negative bacteremia from Gram-positive and bacteremia from fungemia but not as an effective indicator, thereby indicating the need for further large-scale research

    Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli

    Get PDF
    The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L
    • …
    corecore