4 research outputs found

    Criminalizing Support for Terrorism: A Comparative Perspective

    Get PDF
    The student project Elba at KTH started in 2011 and is a project where a battery driven prototype car is developed. The vehicle competes in Eco Shell Marathon in Rotterdam, Holland. In this competition the vehicle that travels a certain distance including several starts and stops with the lowest energy consumption wins. To minimize the consumption is therefore very important, which requires knowledge of the vehicles energy losses. A vehicle's energy losses depends on several factors and can be divided into the powertrain efficiency and the driving resistance. The driving resistance can then be divided in to rolling and air resistance, if smaller losses like vibrations are ignored. This report seeks to develop, describe, and evaluate a couple of methods to measure these two parameters on behalf of KTH Transport Labs. The methods chosen are based on a literature study of earlier developed methods and a dialog with the clients. The measuring methods have been adapted to a low budget and simple measuring conditions such as a garage or a tarmac road. The methods are based on either pulling and free rolling, or only free rolling. The traveled distance, speed, acceleration and driving force are logged during the measurements. The measurements have been done at two different locations, in a garage at StockholmsmĂ€ssan in Älvjö and on a parking lot by Teknikringen 8 at KTH. To measure the different parameters an encoder, accelerometer and force transducer has been used. To computing the driving resistance a graphical user interface was developed in Matlab. The developed measuring methods compute both the rolling and air resistance coefficients which creates great demands on the environment for the measurement. This could make it hard to find a satisfying test track. The unreasonable results from the coast-down, were Elba were rolling freely, at Teknikringen 8 shows the difficulties when the measurement is unprotected from the wind. With small resistance, as in an energy efficient vehicle like Elba, the measurement is more sensitive to disturbances. This causes the need of preprocessing data before the calculations are done. The final finding is that a combination of the described methods is preferable. A measurement to calculate the rolling resistance coefficient is made by pulling the car. Then a coast-down is made according to any of the two suggested methods. This allows the cast down to be done on a different road surface than the one that the rolling resistance coefficient is calculated for. This means that the air resistance for instance could be measured indoors where there is no wind. The purpose of this project was to develop a method to measure rolling and air resistance for Elba or similar vehicles. Due to technical issues and poor measuring conditions no reliable values of the resistance have been resolved with the developed and chosen methods. If the measurements would be repeated with better equipment and better conditions, a good result would be possible to get.Studentprojektet Elba pĂ„ KTH startade 2011 och Ă€r ett projekt dĂ€r en batteridriven prototypbil avsedd att tĂ€vla i Eco Shell Marathon i Rotterdam, Holland tas fram. I denna tĂ€vling vinner det fordon som pĂ„ utsatt tid kör en viss strĂ€cka inkluderande flera starter och stopp med en sĂ„ lĂ„g energiförbrukning som möjligt. Att minimera energikonsumtionen Ă€r alltsĂ„ mycket viktigt vilket stĂ€ller krav pĂ„ kunskap om fordonets förluster. Ett fordons energiförluster beror av flera faktorer sĂ„som drivlinans verkningsgrad och fĂ€rdmotstĂ„ndet. Om mindre förluster sĂ„ som vibrationer försummas kan fĂ€rdmotstĂ„ndet i sin tur delas upp i rull- och luftmotstĂ„nd. Denna rapport syftar till att ta fram, beskriva och utvĂ€rdera nĂ„gra metoder för att mĂ€ta dessa tvĂ„ parametrar pĂ„ uppdrag av KTH Transport Labs. Metoderna som har valts att studeras Ă€r baserade pĂ„ en litteraturstudie av tidigare framtagna metoder och samtal med bestĂ€llaren. Valen utgĂ„r frĂ„n en lĂ„g budget och enkla testmiljöer sĂ„ som garage eller asfaltsvĂ€g. Metoderna bestĂ„r av att antingen dra och frirulla, eller enbart frirulla fordonet. Tillryggalagd strĂ€cka, hastighet, acceleration och drivande kraft loggas under mĂ€tningen. MĂ€tningar har genomförts vid tvĂ„ olika platser, i ett garage vid StockholmsmĂ€ssan i Älvsjö och pĂ„ en parkering vid Teknikringen 8 pĂ„ KTH. För att mĂ€ta de olika storheterna har en pulsgivare, accelerometer och kraftgivare anvĂ€nts. För behandling av data och berĂ€kning av fĂ€rdmotstĂ„nden har ett grafiskt anvĂ€ndargrĂ€nssnitt tagits fram i Matlab. De framtagna mĂ€tmetoderna berĂ€knar bĂ„de rull- och luftmotstĂ„ndskoefficienten vilket stĂ€ller stora krav pĂ„ mĂ€tmiljön. Detta kan göra det svĂ„rt att hitta en tillfredstĂ€llande testbana. De orimliga resultaten frĂ„n utrullningen, dĂ€r Elba frirullas, vid Teknikringen 8 visar pĂ„ svĂ„righeterna dĂ„ mĂ€tningen görs utan skydd frĂ„n vinden. Med smĂ„ fĂ€rdmotstĂ„nd, som hos ett energisnĂ„lt fordon som Elba, blir berĂ€kningarna kĂ€nsligare för störningar. Detta medför att viss förbehandling av data krĂ€vs innan berĂ€kningarna kan genomföras. Slutsatsen Ă€r att en kombination av de beskrivna metoderna Ă€r att föredra. Ett dragtest görs separat för att bestĂ€mma rullmotstĂ„ndskoefficienten. Sedan appliceras nĂ„gon av de tvĂ„ metoderna för att berĂ€kna luftmotstĂ„ndskoefficienten. Detta gör att utrullningen inte behöver ske pĂ„ det underlag som rullmotstĂ„ndskoefficienten söks för. Det innebĂ€r att luftmotstĂ„ndet Ă€r möjligt att mĂ€tas inomhus dĂ€r det Ă€r vindstilla. Syftet med detta arbete var att ta fram en metod för berĂ€kning av rull- och luftmotstĂ„nd hos Elba eller andra liknande fordon. PĂ„ grund av tekniska problem och bristfĂ€lliga mĂ€tmiljöer har inga tillförlitliga vĂ€rden för motstĂ„nden tagits fram med de utvecklade och valda metoderna. Om mĂ€tningarna skulle Ă„terupprepas med bĂ€ttre utrustning och med bĂ€ttre förhĂ„llanden skulle dock trovĂ€rdiga resultat kunna uppnĂ„s

    Test Method Optimization ofSemi-Automatic ParkingFunction

    No full text
    This is a Master of Science project performed at Volvo Cars in Gothenburg and at The RoyalInstitute of Technology KTH in Stockholm. The project is about optimization of the testmethod for semi-automatic parking. The current test method to verify the parking functions aredescribed in a document called design verification method, DVM. The test method in DVMconsiders each function’s parameter separately which takes a lot of test time and all of thefunctions cannot be tested because of time shortage. The aim of this project is to develop anoptimized test method which can solves this issue and can replace the current test method.There are also some other issues that the project need to deal with, such as the sensor’smeasuring error and the optimization of the distance from vehicle to the curb.The current test methods are based on principle of one factor at a time method, which is verytime consuming. Several other test method such as Factorial Design, Taguchi Design andPlacket Burman Design which are based on the principle of factorial design are thereforestudied. Amongst these the factorial design is chosen since it is an adequate design in term ofreduction of test time and other properties which are beneficial for the aim of this project.The proposed test method is evaluated by first performing a test version with a number ofrelevant inputs parameters for which the process is described in Chapter 3 and the evaluationof the method is described in Chapter 4. In Chapter 5 the process on how the proposed methodcan replace the current method is described.The result of this thesis work is a proposed and verified system verification test method forparking assistance which can also be used for other systems as well on some levels.Detta Examensarbete Ă€r utfört hos Volvo Car Corporation i Göteborg och pĂ„ KungligaTekniska Högskolan i Stockholm. Projektet grundar sig pĂ„ att utveckla en optimerad testmetodför semi-automatisk parkering. Den nuvarande testmetoden för funktionsverifiering finnsdokumenterad i ett dokument som kallas för ”metod för designverifiering”, eller ”designverification method (DVM)” pĂ„ engelska. Testmetoden i DVM behandlar varje funktionsparameter separat, vilket innebĂ€r lĂ„nga testtider och alla funktioner hinner dĂ€rför inte testasoch verifieras. Syftet med examensarbetet Ă€r att utveckla en optimerad testmetod som kanĂ„tgĂ€rda detta problem, och ersĂ€tta den gamla testmetoden. Metoden ska ocksĂ„ angripa ochĂ„tgĂ€rda andra förkommande problem som mĂ€tfel frĂ„n sensorer och optimering av strĂ€ckanmellan fordonet och trottoarkanten.Den nuvarande testmetoden behandlar en parameter i taget, vilket Ă€r mycket tidskrĂ€vande.Andra testmetoder sĂ„som Factorial Design, Taguchi Design och Placket-Burman Design, sombehandlar flera parametrar samtidigt har dĂ€rför studerats. Bland dessa metoder valdes Factorialdesign dĂ„ metoden ansĂ„gs vara mest lĂ€mplig för optimering av testtiden.Den föreslagna metoden har evaluerats efter att ha testats med en del relevanta parametrar,processen Ă€r utförligt beskriven i kapitel 3 och 4. Kapitel 5 beskriver hur den utvecklademetoden kan ersĂ€tta den nuvarande metoden.Resultatet frĂ„n detta projekt Ă€r en utvecklad och verifierad testmetod för systemverifiering avparkeringsassistansen, och kan ocksĂ„ anvĂ€ndas för andra system till en viss grĂ€ns

    Test Method Optimization ofSemi-Automatic ParkingFunction

    No full text
    This is a Master of Science project performed at Volvo Cars in Gothenburg and at The RoyalInstitute of Technology KTH in Stockholm. The project is about optimization of the testmethod for semi-automatic parking. The current test method to verify the parking functions aredescribed in a document called design verification method, DVM. The test method in DVMconsiders each function’s parameter separately which takes a lot of test time and all of thefunctions cannot be tested because of time shortage. The aim of this project is to develop anoptimized test method which can solves this issue and can replace the current test method.There are also some other issues that the project need to deal with, such as the sensor’smeasuring error and the optimization of the distance from vehicle to the curb.The current test methods are based on principle of one factor at a time method, which is verytime consuming. Several other test method such as Factorial Design, Taguchi Design andPlacket Burman Design which are based on the principle of factorial design are thereforestudied. Amongst these the factorial design is chosen since it is an adequate design in term ofreduction of test time and other properties which are beneficial for the aim of this project.The proposed test method is evaluated by first performing a test version with a number ofrelevant inputs parameters for which the process is described in Chapter 3 and the evaluationof the method is described in Chapter 4. In Chapter 5 the process on how the proposed methodcan replace the current method is described.The result of this thesis work is a proposed and verified system verification test method forparking assistance which can also be used for other systems as well on some levels.Detta Examensarbete Ă€r utfört hos Volvo Car Corporation i Göteborg och pĂ„ KungligaTekniska Högskolan i Stockholm. Projektet grundar sig pĂ„ att utveckla en optimerad testmetodför semi-automatisk parkering. Den nuvarande testmetoden för funktionsverifiering finnsdokumenterad i ett dokument som kallas för ”metod för designverifiering”, eller ”designverification method (DVM)” pĂ„ engelska. Testmetoden i DVM behandlar varje funktionsparameter separat, vilket innebĂ€r lĂ„nga testtider och alla funktioner hinner dĂ€rför inte testasoch verifieras. Syftet med examensarbetet Ă€r att utveckla en optimerad testmetod som kanĂ„tgĂ€rda detta problem, och ersĂ€tta den gamla testmetoden. Metoden ska ocksĂ„ angripa ochĂ„tgĂ€rda andra förkommande problem som mĂ€tfel frĂ„n sensorer och optimering av strĂ€ckanmellan fordonet och trottoarkanten.Den nuvarande testmetoden behandlar en parameter i taget, vilket Ă€r mycket tidskrĂ€vande.Andra testmetoder sĂ„som Factorial Design, Taguchi Design och Placket-Burman Design, sombehandlar flera parametrar samtidigt har dĂ€rför studerats. Bland dessa metoder valdes Factorialdesign dĂ„ metoden ansĂ„gs vara mest lĂ€mplig för optimering av testtiden.Den föreslagna metoden har evaluerats efter att ha testats med en del relevanta parametrar,processen Ă€r utförligt beskriven i kapitel 3 och 4. Kapitel 5 beskriver hur den utvecklademetoden kan ersĂ€tta den nuvarande metoden.Resultatet frĂ„n detta projekt Ă€r en utvecklad och verifierad testmetod för systemverifiering avparkeringsassistansen, och kan ocksĂ„ anvĂ€ndas för andra system till en viss grĂ€ns

    Utveckling av MÀtmetoder för FÀrdmotstÄnd

    No full text
    The student project Elba at KTH started in 2011 and is a project where a battery driven prototype car is developed. The vehicle competes in Eco Shell Marathon in Rotterdam, Holland. In this competition the vehicle that travels a certain distance including several starts and stops with the lowest energy consumption wins. To minimize the consumption is therefore very important, which requires knowledge of the vehicles energy losses. A vehicle's energy losses depends on several factors and can be divided into the powertrain efficiency and the driving resistance. The driving resistance can then be divided in to rolling and air resistance, if smaller losses like vibrations are ignored. This report seeks to develop, describe, and evaluate a couple of methods to measure these two parameters on behalf of KTH Transport Labs. The methods chosen are based on a literature study of earlier developed methods and a dialog with the clients. The measuring methods have been adapted to a low budget and simple measuring conditions such as a garage or a tarmac road. The methods are based on either pulling and free rolling, or only free rolling. The traveled distance, speed, acceleration and driving force are logged during the measurements. The measurements have been done at two different locations, in a garage at StockholmsmĂ€ssan in Älvjö and on a parking lot by Teknikringen 8 at KTH. To measure the different parameters an encoder, accelerometer and force transducer has been used. To computing the driving resistance a graphical user interface was developed in Matlab. The developed measuring methods compute both the rolling and air resistance coefficients which creates great demands on the environment for the measurement. This could make it hard to find a satisfying test track. The unreasonable results from the coast-down, were Elba were rolling freely, at Teknikringen 8 shows the difficulties when the measurement is unprotected from the wind. With small resistance, as in an energy efficient vehicle like Elba, the measurement is more sensitive to disturbances. This causes the need of preprocessing data before the calculations are done. The final finding is that a combination of the described methods is preferable. A measurement to calculate the rolling resistance coefficient is made by pulling the car. Then a coast-down is made according to any of the two suggested methods. This allows the cast down to be done on a different road surface than the one that the rolling resistance coefficient is calculated for. This means that the air resistance for instance could be measured indoors where there is no wind. The purpose of this project was to develop a method to measure rolling and air resistance for Elba or similar vehicles. Due to technical issues and poor measuring conditions no reliable values of the resistance have been resolved with the developed and chosen methods. If the measurements would be repeated with better equipment and better conditions, a good result would be possible to get.Studentprojektet Elba pĂ„ KTH startade 2011 och Ă€r ett projekt dĂ€r en batteridriven prototypbil avsedd att tĂ€vla i Eco Shell Marathon i Rotterdam, Holland tas fram. I denna tĂ€vling vinner det fordon som pĂ„ utsatt tid kör en viss strĂ€cka inkluderande flera starter och stopp med en sĂ„ lĂ„g energiförbrukning som möjligt. Att minimera energikonsumtionen Ă€r alltsĂ„ mycket viktigt vilket stĂ€ller krav pĂ„ kunskap om fordonets förluster. Ett fordons energiförluster beror av flera faktorer sĂ„som drivlinans verkningsgrad och fĂ€rdmotstĂ„ndet. Om mindre förluster sĂ„ som vibrationer försummas kan fĂ€rdmotstĂ„ndet i sin tur delas upp i rull- och luftmotstĂ„nd. Denna rapport syftar till att ta fram, beskriva och utvĂ€rdera nĂ„gra metoder för att mĂ€ta dessa tvĂ„ parametrar pĂ„ uppdrag av KTH Transport Labs. Metoderna som har valts att studeras Ă€r baserade pĂ„ en litteraturstudie av tidigare framtagna metoder och samtal med bestĂ€llaren. Valen utgĂ„r frĂ„n en lĂ„g budget och enkla testmiljöer sĂ„ som garage eller asfaltsvĂ€g. Metoderna bestĂ„r av att antingen dra och frirulla, eller enbart frirulla fordonet. Tillryggalagd strĂ€cka, hastighet, acceleration och drivande kraft loggas under mĂ€tningen. MĂ€tningar har genomförts vid tvĂ„ olika platser, i ett garage vid StockholmsmĂ€ssan i Älvsjö och pĂ„ en parkering vid Teknikringen 8 pĂ„ KTH. För att mĂ€ta de olika storheterna har en pulsgivare, accelerometer och kraftgivare anvĂ€nts. För behandling av data och berĂ€kning av fĂ€rdmotstĂ„nden har ett grafiskt anvĂ€ndargrĂ€nssnitt tagits fram i Matlab. De framtagna mĂ€tmetoderna berĂ€knar bĂ„de rull- och luftmotstĂ„ndskoefficienten vilket stĂ€ller stora krav pĂ„ mĂ€tmiljön. Detta kan göra det svĂ„rt att hitta en tillfredstĂ€llande testbana. De orimliga resultaten frĂ„n utrullningen, dĂ€r Elba frirullas, vid Teknikringen 8 visar pĂ„ svĂ„righeterna dĂ„ mĂ€tningen görs utan skydd frĂ„n vinden. Med smĂ„ fĂ€rdmotstĂ„nd, som hos ett energisnĂ„lt fordon som Elba, blir berĂ€kningarna kĂ€nsligare för störningar. Detta medför att viss förbehandling av data krĂ€vs innan berĂ€kningarna kan genomföras. Slutsatsen Ă€r att en kombination av de beskrivna metoderna Ă€r att föredra. Ett dragtest görs separat för att bestĂ€mma rullmotstĂ„ndskoefficienten. Sedan appliceras nĂ„gon av de tvĂ„ metoderna för att berĂ€kna luftmotstĂ„ndskoefficienten. Detta gör att utrullningen inte behöver ske pĂ„ det underlag som rullmotstĂ„ndskoefficienten söks för. Det innebĂ€r att luftmotstĂ„ndet Ă€r möjligt att mĂ€tas inomhus dĂ€r det Ă€r vindstilla. Syftet med detta arbete var att ta fram en metod för berĂ€kning av rull- och luftmotstĂ„nd hos Elba eller andra liknande fordon. PĂ„ grund av tekniska problem och bristfĂ€lliga mĂ€tmiljöer har inga tillförlitliga vĂ€rden för motstĂ„nden tagits fram med de utvecklade och valda metoderna. Om mĂ€tningarna skulle Ă„terupprepas med bĂ€ttre utrustning och med bĂ€ttre förhĂ„llanden skulle dock trovĂ€rdiga resultat kunna uppnĂ„s
    corecore