28,175 research outputs found
Thermally-driven Neutron Star Glitches
We examine the thermal and dynamical response of a neutron star to a sudden
perturbation of the inner crust temperature. During the star's evolution,
starquakes and other processes may deposit \gap 10^{42} ergs, causing
significant internal heating and increased frictional coupling between the
crust and the more rapidly rotating neutron superfluid the star is expected to
contain. Through numerical simulation we study the propagation of the thermal
wave created by the energy deposition, the induced motion of the interior
superfluid, and the resulting spin evolution of the crust. We find that energy
depositions of ergs produce gradual spin-ups above the timing
noise level, while larger energy depositions produce sudden spin jumps
resembling pulsar glitches. For a star with a temperature in the observed range
of the Vela pulsar, an energy deposition of ergs produces a
large spin-up taking place over minutes, similar to the Vela ``Christmas''
glitch. Comparable energy deposition in a younger and hotter ``Crab-like'' star
produces a smaller spin-up taking place over day, similar to that seen
during the partially time-resolved Crab glitch of 1989.Comment: 21 pages plus 17 figures, uuencode compressed Postscript. Accepted
for publication in the Astrophysical Journa
The Absorption of Sound in Suspensions and Emulsions. I. Water Fog in Air
The suspended particles are approximated by spheres and the diffraction problem for a fluid sphere in a fluid medium is solved taking into consideration viscosity and thermal conduction. The results are discussed numerically for water droplets in air and a satisfactory agreement with Knudsen's attenuation measurements in water fog is found
On Colorful Bin Packing Games
We consider colorful bin packing games in which selfish players control a set
of items which are to be packed into a minimum number of unit capacity bins.
Each item has one of colors and cannot be packed next to an item of
the same color. All bins have the same unitary cost which is shared among the
items it contains, so that players are interested in selecting a bin of minimum
shared cost. We adopt two standard cost sharing functions: the egalitarian cost
function which equally shares the cost of a bin among the items it contains,
and the proportional cost function which shares the cost of a bin among the
items it contains proportionally to their sizes. Although, under both cost
functions, colorful bin packing games do not converge in general to a (pure)
Nash equilibrium, we show that Nash equilibria are guaranteed to exist and we
design an algorithm for computing a Nash equilibrium whose running time is
polynomial under the egalitarian cost function and pseudo-polynomial for a
constant number of colors under the proportional one. We also provide a
complete characterization of the efficiency of Nash equilibria under both cost
functions for general games, by showing that the prices of anarchy and
stability are unbounded when while they are equal to 3 for black and
white games, where . We finally focus on games with uniform sizes (i.e.,
all items have the same size) for which the two cost functions coincide. We
show again a tight characterization of the efficiency of Nash equilibria and
design an algorithm which returns Nash equilibria with best achievable
performance
The calculation of long-wave radiative transfer in planetary atmospheres
Equations, computer techniques, and model calculations of long wave radiative transfer in planetary atmosphere
Improvement of uncoupled Hartree-Fock expectation values for physical properties, II
Improvement of uncoupled Hartree-Fock expectation values for physical propertie
Brillouin Cooling
We analyze how to exploit Brillouin scattering for the purpose of cooling
opto-mechanical devices and present a quantum-mechanical theory for Brillouin
cooling. Our analysis shows that significant cooling ratios can be obtained
with standard experimental parameters. A further improvement of cooling
efficiency is possible by increasing the dissipation of the optical anti-Stokes
resonance.Comment: 4 pages 3 figure
- âŠ