1,865 research outputs found

    A trapped single ion inside a Bose-Einstein condensate

    Full text link
    Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms and coherent light-matter interfaces have been built. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms and to detect variations of fundamental constants in precision atomic clocks. Until now, atomic quantum gases and single trapped ions have been treated separately in experiments. Here we investigate whether they can be advantageously combined into one hybrid system, by exploring the immersion of a single trapped ion into a Bose-Einstein condensate of neutral atoms. We demonstrate independent control over the two components within the hybrid system, study the fundamental interaction processes and observe sympathetic cooling of the single ion by the condensate. Our experiment calls for further research into the possibility of using this technique for the continuous cooling of quantum computers. We also anticipate that it will lead to explorations of entanglement in hybrid quantum systems and to fundamental studies of the decoherence of a single, locally controlled impurity particle coupled to a quantum environment

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    Vectors Based on Modified Vaccinia Ankara Expressing Influenza H5N1 Hemagglutinin Induce Substantial Cross-Clade Protective Immunity

    Get PDF
    New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine.The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-Ξ³ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades.The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine

    Hendra Virus Infection Dynamics in Australian Fruit Bats

    Get PDF
    Hendra virus is a recently emerged zoonotic agent in Australia. Since first described in 1994, the virus has spilled from its wildlife reservoir (pteropid fruit bats, or β€˜flying foxes’) on multiple occasions causing equine and human fatalities. We undertook a three-year longitudinal study to detect virus in the urine of free-living flying foxes (a putative route of excretion) to investigate Hendra virus infection dynamics. Pooled urine samples collected off plastic sheets placed beneath roosting flying foxes were screened for Hendra virus genome by quantitative RT-PCR, using a set of primers and probe derived from the matrix protein gene. A total of 1672 pooled urine samples from 67 sampling events was collected and tested between 1 July 2008 and 30 June 2011, with 25% of sampling events and 2.5% of urine samples yielding detections. The proportion of positive samples was statistically associated with year and location. The findings indicate that Hendra virus excretion occurs periodically rather than continuously, and in geographically disparate flying fox populations in the state of Queensland. The lack of any detection in the Northern Territory suggests prevalence may vary across the range of flying foxes in Australia. Finally, our findings suggest that flying foxes can excrete virus at any time of year, and that the apparent seasonal clustering of Hendra virus incidents in horses and associated humans (70% have occurred June to October) reflects factors other than the presence of virus. Identification of these factors will strengthen risk minimization strategies for horses and ultimately humans

    A Pandemic Influenza H1N1 Live Vaccine Based on Modified Vaccinia Ankara Is Highly Immunogenic and Protects Mice in Active and Passive Immunizations

    Get PDF
    The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-Ξ³-secreting (IFN-Ξ³) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas

    Epidemiology and genetic characterization of Peste des petits ruminants virus in Bangladesh

    Get PDF
    Peste des petits ruminants (PPR) is an acute, highly contagious disease responsible for high morbidity and mortality rates in susceptible sheep and goats. Adequate knowledge of the diversity of circulating strains of PPR virus will help livestock authorities choose appropriate vaccines. The objective of this study was to describe the epidemiology of PPR and characterize the strains circulating in Bangladesh. Veterinarians enrolled goats showing signs consistent with PPR, including diarrhoea, fever and respiratory distress, from three veterinary hospitals. Post-treatment follow up was carried out to ascertain health outcomes of the goats. Faecal and throat swab samples were collected from the goats and tested for PPRV RNA using real-time reverse transcription polymerase chain reaction (rRT-PCR). Nucleotide sequence-based phylogenetic analyses of two structural genes, the nucleocapsid (N gene), and the haemagglutinin (H gene) were studied to determine the genetic variations of PPRV strains. Of the 539 goats enrolled, 38% (203/539) had detectable RNA for PPRV. We were able to follow up with 91% (184/203) of the PPRV infected goats; 44 of them died (24%). PPRV was more frequently identified in the summer (45%) than in the rainy season (29%) (Odds ratio = 1.9, 95% confidence interval: 1.3–3.1). Bangladeshi strains were phylogenetically similar to the lineage IV PPRV strains; showing particularly strong affiliation with Tibetan and Indian strains. PPR is a common viral infection of the goats in Bangladesh, with a high case-fatality rate. This study confirms the circulation of lineage IV PPRV in the country with unique amino acid substitutions in N and H proteins and provides baseline data for vaccine development and implementation

    Identification of GBV-D, a Novel GB-like Flavivirus from Old World Frugivorous Bats (Pteropus giganteus) in Bangladesh

    Get PDF
    Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16 Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C (GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades
    • …
    corecore