748 research outputs found

    Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T

    Get PDF
    Background: Myocardial infarction (MI) can be readily assessed using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). Inversion recovery (IR) sequences provide the highest contrast between enhanced infarct areas and healthy myocardium. Applying such methods to small animals is challenging due to rapid respiratory and cardiac rates relative to T-1 relaxation.Methods: Here we present a fast and robust protocol for assessing LGE in small animals using a multi-slice IR gradient echo sequence for efficient assessment of LGE. An additional Look-Locker sequence was used to assess the optimum inversion point on an individual basis and to determine most appropriate gating points for both rat and mouse. The technique was applied to two preclinical scenarios: i) an acute (2 hour) reperfused model of MI in rats and ii) mice 2 days following non-reperfused MI.Results: LGE images from all animals revealed clear areas of enhancement allowing for easy volume segmentation. Typical inversion times required to null healthy myocardium in rats were between 300-450 ms equivalent to 2-3 R-waves and similar to 330 ms in mice, typically 3 R-waves following inversion. Data from rats was also validated against triphenyltetrazolium chloride staining and revealed close agreement for infarct size.Conclusion: The LGE protocol presented provides a reliable method for acquiring images of high contrast and quality without excessive scan times, enabling higher throughput in experimental studies requiring reliable assessment of MI

    Game Theory of Social Distancing in Response to an Epidemic

    Get PDF
    Social distancing practices are changes in behavior that prevent disease transmission by reducing contact rates between susceptible individuals and infected individuals who may transmit the disease. Social distancing practices can reduce the severity of an epidemic, but the benefits of social distancing depend on the extent to which it is used by individuals. Individuals are sometimes reluctant to pay the costs inherent in social distancing, and this can limit its effectiveness as a control measure. This paper formulates a differential-game to identify how individuals would best use social distancing and related self-protective behaviors during an epidemic. The epidemic is described by a simple, well-mixed ordinary differential equation model. We use the differential game to study potential value of social distancing as a mitigation measure by calculating the equilibrium behaviors under a variety of cost-functions. Numerical methods are used to calculate the total costs of an epidemic under equilibrium behaviors as a function of the time to mass vaccination, following epidemic identification. The key parameters in the analysis are the basic reproduction number and the baseline efficiency of social distancing. The results show that social distancing is most beneficial to individuals for basic reproduction numbers around 2. In the absence of vaccination or other intervention measures, optimal social distancing never recovers more than 30% of the cost of infection. We also show how the window of opportunity for vaccine development lengthens as the efficiency of social distancing and detection improve

    Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease

    Get PDF
    BACKGROUND: While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS: Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10%  40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS: Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS: Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients

    Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings

    Get PDF
    Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free) reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter) estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free) reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating

    Transient and Microscale Deformations and Strains Measured under Exogenous Loading by Noninvasive Magnetic Resonance

    Get PDF
    Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI) has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 µm and a temporal resolution (of 2.25 ms), set by the repetition time (TR) of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 µm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR) echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T2 biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues

    Profiling of cardio-metabolic risk factors and medication utilisation among Type II diabetes patients in Ghana: a prospective cohort study

    Get PDF
    Background: Type II diabetes mellitus (T2DM) is complicated by multiple cardio-metabolic risk factors. Controlling these factors requires lifestyle modifications alongside utilisation of anti-diabetic medications. Different glucose lowering [(biguanides (BIGs), sulfonylureas (SUAs), thiazolidinediones (TNZ)], lipid lowering (statins), and anti-hypertensive medicines [angiotensin converting enzyme inhibitors (ACEIs), calcium channel blockers (CCBs), angiotensin II receptor blockers (ARBs) and central acting drugs (CADs)] have been approved for controlling hyperglycaemia, dyslipidaemia and hypertension respectively. Here, we examined factors that characterise T2DM and explored the response to medication therapy among T2DM patients. Methods: This prospective cohort study recruited 241 T2DM patients reporting at a clinic in Ghana, from January through to August, 2016. Each patient’s demographic, medications and anthropometric data was obtained while information on medication adherence was captured using Morisky adherence scale-8 (MMAS-8). Fasting blood samples were collected for biochemical analysis. Results: The mean age of participants was 57.82 years for baseline and six-month follow-up. Physical activity differed at baseline and follow up (p \u3c 0.05) but not body mass index (BMI). BIG alone, or in combination with SUA and TNZ did not improve glycaemic status at follow up (p \u3e 0.05). Many participants using either ACEI or ARB were able to control their blood pressures. Among dyslipidaemia patients under statin treatment, there was an improved lipid profile at follow-up. Conclusions: Statin medications are effective for reducing dyslipidaemia in T2DM patients. However, control of modifiable risk factors, particularly blood glucose and to a lesser degree blood pressure is suboptimal. Addressing these will require concomitant interventions including education on medication adherence and correct dietary plans, lifestyle modifications and physical activity

    Changing presentation of prostate cancer in a UK population--10 year trends in prostate cancer risk profiles in the East of England.

    Get PDF
    BACKGROUND: Prostate cancer incidence is rising in the United Kingdom but there is little data on whether the disease profile is changing. To address this, we interrogated a regional cancer registry for temporal changes in presenting disease characteristics. METHODS: Prostate cancers diagnosed from 2000 to 2010 in the Anglian Cancer Network (n=21,044) were analysed. Risk groups (localised disease) were assigned based on NICE criteria. Age standardised incidence rates (IRs) were compared between 2000-2005 and 2006-2010 and plotted for yearly trends. RESULTS: Over the decade, overall IR increased significantly (P<0.00001), whereas metastasis rates fell (P<0.0007). For localised disease, IR across all risk groups also increased but at different rates (P<0.00001). The most striking change was a three-fold increase in intermediate-risk cancers. Increased IR was evident across all PSA and stage ranges but with no upward PSA or stage shift. In contrast, IR of histological diagnosis of low-grade cancers fell over the decade, whereas intermediate and high-grade diagnosis increased significantly (P<0.00001). CONCLUSION: This study suggests evidence of a significant upward migration in intermediate and high-grade histological diagnosis over the decade. This is most likely to be due to a change in histological reporting of diagnostic prostate biopsies. On the basis of this data, increasing proportions of newly diagnosed cancers will be considered eligible for radical treatment, which will have an impact on health resource planning and provision
    corecore