18 research outputs found

    Come for the Content, Stay for the Community

    Get PDF

    Visualizing and Analyzing Structures of Coordination Polymers Synthesized in Ionic Liquids

    Get PDF
    Synthesis of metal organic frameworks can result in different products based on the solvent that is used. One option is to use ionic liquids (ILs, or room temperature molten salts) to create novel metal organic coordination polymers. Our group analyzed metal organic polymers synthesized in ILs with the goal of cataloging the topology of the structures, the connectivity of the organic ligands, and the roles of the ILs in the syntheses. We used Sci-Finder Scholar to find papers where compounds were synthesized using ILs, and determined whether the IL played the role as the cation, anion, or neither in the resulting structures. We used the program Conquest to search databases for structures we identified through SciFinder and then created custom figures using the program Mercury that we could then analyze and manipulate. With each paper that we analyzed, our goal was to create figures that highlight the structural features, and analyze them to understand the connections between the metal ions and the ligands. One of the structures worked on this summer was the molecule [BMIm]2[Nb6Cl12(NCS)6]. Pigorsch and coworkers synthesized the 3D bridged compound with an ionic liquid playing a unique role. In the synthesis, the ionic liquid [BMIm][PF6], is used as a crystallization medium, but also as a cation source to allow for the synthesis to occur. The final structure is a 3D structure that has metal-metal bonding, and is connected by weak H-bonds. In this paper, the ionic liquid played the role as a ‘medium’, but we looked at papers where the ionic liquid played a role in the formation of cations and anions as well. Another structure worked on this summer was [Mn2(ptptp)(suc)0.5(H2O)3] • Br • 0.5H2O synthesized by Qin et al. The structure is a 1D helical structure that forms 3D supramolecular networks through intermolecular forces. The ionic liquid, [RMI]Br (R= ethyl, propyl, butyl), acted as an anion source and a structure regulator that allowed for the formation of the helix with a ladder structure. After this summer, we plan to write a review paper incorporating these and other metal organic polymer syntheses using ionic liquids, using the figures we created to visualize our work. Supervisor: Prof. Hilary Eppley, Ph

    Conceptualizing and Analyzing Metal-Organic Frameworks and the Role of the Ionic Liquid

    Get PDF
    The synthesis of Metal-Organic Frameworks, or MOFs, can be easily changed or manipulated simply by changing the solvent medium. The research focused primarily on the role ionic liquids (ILs) had in MOF synthesis. ILs can be defined as salts that are liquid at room temperature. IL ligands were found one of three ways in the final structure; either acting as the anion, cation, or neither and just acting as a medium for a reaction. This research primarily revolved around Cambridge Structural Database (CSD). The purpose of CSD was a way to look more closely at these crystalline structures from previous research papers and create certain figures that are different from the ones used in the originals to formulate a better understanding of the role of the IL in the MOFs. Keywords to the research, searched in databases such as Scifinder Scholar, and Google Scholar to try and find research papers with a suitable structure that could be found via CSD. The suitable structures found in the research papers were searched in CSD, so they could be transferred to its associated software Mercury. By using Mercury, new structures were created to convey and highlight the role of the IL and differences in connections from structure to structure. One structure in particular was synthesized by Ribbeck et al. They were able to crystalize the 3D Frameworks of lanthanide ions with pentaflouroethyltricyanoborate with the ionic liquid ethyl-methyl-imidazolium or emim. In this specific case, the ionic liquid emim plays the role of the anion in the 3D crystalline structure; linking together the metal in an unique way. Another of the papers analyzed discussed the ionothermal synthesis of compounds [emim][Mn(btc)] and [pmim][Mn(btc)] with the latter having different structures dependent upon the IL. In the case of these compounds, the IL not only acted as a medium, but the IL’s anion was part of the final structure and contributed to the structural differences between compounds. Throughout the research in the final product, the IL could act as an anion, a cation, or not appear in the final product at all. However, no matter how the ionic liquid played into the final structure, every structure varied by bridging ligand, types of connections from ligand to metal (such as monodentate or bidentate, etc.), the metal coordination number, the metal geometry, the ligand plane, and the net of the centroids. After gathering the data together, this information was used to create structures and find similarities between each of the papers and the MOFs within them

    Viper Faculty Development Workshops: A New Model for the Creation of New Teaching Materials

    No full text
    IONiC VIPEr (www.ionicviper.org) is a virtual community and a “living” repository for online teaching materials in the field of inorganic chemistry. The Leadership Council of IONiC has developed a “Back to Grad School” model for creating new learning objects and for enhancing our community. We have hosted week long faculty development workshops where research experts from top graduate programs present cutting edge science and teams of faculty jointly develop materials based on these presentations. Participants are groomed for greater participation in the online community, teaching materials developed at the conference are tested, and feedback and assessment data on these teaching materials is provided directly on the website. Data will be presented on how the face-to-face interactions at the workshop enhance the online community, the classes of the participants, and the website itself. Professional development benefits to conference organizers, research faculty experts, PUI faculty, graduate students, and the wider online community will be discussed, and we will share a list of our best practices for transferring the energy of a face-to-face faculty development workshop to the virtual community of practice

    Inorganic chemistry and IONiC: an online community bringing cutting-edge research into the classroom

    No full text
    This Viewpoint highlights creative ways that members of the Interactive Online Network of Inorganic Chemists (IONiC) are using journal articles from Inorganic Chemistry to engage undergraduate students in the classroom. We provide information about specific educational materials and networking features available free of charge to the inorganic community on IONiC\u27s web home, the Virtual Inorganic Pedagogical Electronic Resource (VIPEr, www.ionicviper.org ) and describe the benefits of joining this community

    Building an Online Teaching Community: An Evolving Tale of Communication, Collaboration, and Chemistry in Enhancing Learning with Online Resources, Social Networking, and Digital Libraries

    No full text
    The Interactive Online Network of Inorganic Chemists (IONiC) has grown from a small group of faculty to a national and international network focused on improving inorganic chemistry learning. IONiC’s vision is to create a community of teachers and learners who make teaching visible using social networking tools to share, discuss, test, and assess their teaching methods. The features that have allowed the IONiC community to develop and grow and IONiC’s vision for the future are described. It is likely that the lessons learned apply to other groups seeking to develop professional communities through social networking

    Cu(II)-mediated intramolecular carbene cation radical formation: relevance to unimolecular metal-ligand radical intermediates

    No full text
    We report the syntheses of the photochemically labile 9-diazo-4,5-diazafluorene (1) framework and the corresponding Cu(9-diazo-4,5-diazafluorene)(2)(NO(3))(2) compound (2). The X-ray structure of 2 reveals a 6-coordinate, tetragonal geometry with one nitrogen donor of an asymmetrically chelated diazafluorene in the equatorial position and the other defining the weak Jahn-Teller axis. The nitrate counterions bind in a monodentate fashion in the equatorial plane to complete the coordination sphere. Extended Hückel calculations reveal that the unusual solid-state structure derives from the enlarged bite angle of the fluorene skeleton and steric interactions between the adjacent hydrogen atoms in the higher energy (0.45 eV) symmetrically coordinated state. This is in contrast to Cu(py)(4)(NO(3))(2) which is 1.3 eV more stable with the nitrate counterions bound along the Jahn-Teller axis. Electron paramagnetic resonance (EPR) studies in solution reveal that the nitrates dissociate to yield 6-coordinate CuN(2)X(2)N(2)\u27 structures with either a bound chloride ion (g(x) = 2.10, g(y) = 2.04, g(z) = 2.23, A(z) = 177 x 10(-4) cm(-1)) or a mixture of counterion and solvent (g(x)(a) = 2.05, g(y)(a) = 2.06, g(z)(a) = 2.29, A(z)(a) = 170 x 10(-4) cm(-1); g(x)(b) = 2.07, g(y)(b) = 2.08, g(z)(b) = 2.34, A(z)(b) = 155 x 10(-4) cm(-1)). Photolyses of 1 and 2 indicate loss of N(2) and formation of either carbene ([D/hc] = 0.408 cm(-1), [E/hc] = 0.0292 cm(-1)) or Cu(I)-L(*)(+) (S = (1)/(2), g = 2.0019) intermediates, which are identified by EPR, UV-vis, and time-dependent density functional theory methods. The results illustrate the important role redox active transition metals play in determining the nature of fundamental metal-ligand radical intermediates

    Virtual Inorganic Pedagogical Electronic Resource Learning Objects in Organometallic Chemistry

    No full text
    Four Virtual Inorganic Pedagogical Electronic Resource (VIPEr) learning objects featuring organometallic chemistry are highlighted

    IONiC: A cyber-enabled community of practice for improving inorganic chemicalEducation

    No full text
    IONiC’s purpose is to enhance the inorganicChemistry classroom and laboratory experience for students and faculty members through the development of a vibrant virtual “community of practice”
    corecore